
Fault Aware
Global Server
Load Balancer

in DNS
Stefan Caunter

Allan Jude

Target Audience

● Does your organization have more than one Point
of Presence?

● Would you or your app benefit from geographically
segmenting your traffic?

● Could you use the ability to deploy simple failover
(active/passive) or multi-node load balancing?

● Do you want your server monitoring to automatically
update your DNS?

● gDNSd (topic of this talk) was originally built at
Logitech to manage directing users to nearby driver
download mirrors

Us (ScaleEngine guys)

Allan Jude
○ 10 Years as FreeBSD Server Admin
○ Architect of the ScaleEngine ESC/CDN
○ Professor - Mohawk College (2008-2011)
○ Host of TechSNAP.tv Podcast

Stefan Caunter
○ 12 Years as a *BSD Server Admin
○ Web Ops at TheStar.com (Large Toronto

Newspaper)
○ Mohawk College / Seneca (2001 - 2009)

ScaleEngine runs on this open source GSLB

Overview

● Introduction to ScaleEngine
● Challenges with growth
● What is a Global Server Load Balancer?

○ What are the current solutions?
● gDNSd implementation

○ Defining a Response Policy
○ Advanced Response Policies with GeoIP
○ Use Cases and Example Configurations
○ Advanced Performance Agents
○ Active Performance Monitoring
○ On-Demand Capacity via DNS
○ EDNS-Client-Subnet Implementation
○ Working around the EDNS whitelist

● Lessons Learned

What is a ScaleEngine

ScaleEngine is a global CDN, Video Streaming
provider and application hosting platform entirely
powered by FreeBSD
● ESC - Edge Caching for small web objects
● CDN - Global Caching for all web objects
● VSN - Live and On-Demand Video Streaming to

Desktop and Mobile (RTMP, RTSP, HLS)
● OWC - Accelerated PHP/MySQL application

hosting
● GSLB - Managed Global Server Load Balancer

Under the hood

● 70 non-virtualized hosts
○ 25 different data centers
○ 9 different countries
○ Aggregate 1500GB of ram
○ Aggregate 50 gigabits/sec uplink capacity

● All running FreeBSD 9.x
● Managed by Puppet
● Extensive use of Jails (w/ ezjail)
● ESC powered by Varnish
● CDN/OWC powered by NGINX
● OWC uses cluster of jails running php-fpm

Stats

● The last year (Oct 1 2011 - Sept 30 2012)
○ Origin: 1451 M requests, 31.7 TB
○ CDN: 2.2 B requests, 66.0 TB
○ ESC: 34.2 B requests, 173.4 TB
○ VSN: 126 M requests, 1644 TB

● Sept 2012:
○ Origin: 185 M requests, 7.2 TB
○ CDN: 275 M requests , 9.5 TB
○ ESC: 5.3 B requests, 25.8 TB

■ Average: 2050 requests/sec
■ Peak: 4950 requests/sec

○ VSN: 17.8 M requests, 190.8TB
■ Peak: 17.9 gbps

We push a fair amount of bits

VIDEO: We have very spiky "event" driven traffic,
from < 100 to 10000 megabits in 5 minutes
● Low request rate, extremely high bandwidth
● Long lived sessions
● Peak load
HTTP: Compared to very smooth, "constant
demand" traffic from the http CDN
● High request rate, lower bandwidth
● Base load
Both benefit from geographic distribution, but for
different reasons

Some Background

● Our CDN got started after a large hosting
customer quadrupled in size

● We were on a fixed commit with our
expensive North American hosting provider,
a modest 10mpbs with burst to 100mbps

● We found that getting additional servers from
a cheaper provider, and creating a
subdomain for image content offloaded
enough traffic to avoid expensive overage
charges on our permium transit

HTTP and subdomains

● Modern browsers will parallel download if
you serve content from additional domains

● improves speed if user is reasonably close
to server

● *does not improve speed if user is not
reasonably close to server

● Separating domains means no cookies to
block caching

● allows to cache popular content to reduce
outbound traffic from origin

smooth HTTP graph

The Challenge

● It immediately becomes apparent that just
creating a couple of CNAMEs for a
subdomain is suboptimal and cumbersome
to manage on a large scale

● Users do not benefit from any geographic
awareness with round-robin DNS

● Some resolvers seem to sort round-robin
results alphabetically, distorting the usage

● So, we were benefiting by offloading
network, but UX was not as good as we
would want

● External providers were cheaper for bw (and sold per
TB), spread out geographically and topographically
(different providers / transit)

● Manually managed DNS using Bind Views for some
geo-intelligence, required many copies of each zone

● Manually marking servers down/up resulted in slow
response to state changes, needed to be automated

● Our initial plan for geo-dns and scaling globally was to
implement anycast, but we had limited responses, lack
of expertise, and some reluctant providers

● Our basic non-dynamic dns weighting technique was to
list multiple ips per node in the RR

● This compounded our management problems, and we
ran into the dns response size limit (more later)

Growing Pains

EDNS0

The original DNS RFC stated that DNS responses
larger than 512 bytes should be returned via TCP
rather than UDP

In 1999, EDNS0 was introduced, allowing for DNS
responses up to 4096 bytes over UDP with
fragmentation

gDNSd's $ADDR_LIMIT_V4 and
$ADDR_LIMIT_V6 allow us to limit the size of the
response to avoid complications

Old Firewalls Haunt the Internet

Some dated firewall rulesets still block UDP
DNS response packets larger than 512 bytes.
This is not normally a problem because larger
responses are only returned to clients who
indicate support for EDNS0, however if an
intermediary firewall blocks DNS responses
larger than 512, the user requests a larger
response but then cannot receive it, causing
the lookup to time out. DNSSEC will make this
issue more pronounced, and possibly result in
the issue being rectified

New Territory - Video

● We got requests to do video streaming, and started
playing around with it

● More and more requests came from Europe
● Entirely different scaling problems now, with video it

was link capacity that become an issue
● Needed gigabit servers, and providers that would

sell us additional bandwidth at a reasonable price
● Surprise, Bandwidth is even cheaper in Europe!
● Some providers in Europe had bad transit to NA
● Completely unpredictable scaling demand

compared to HTTP
● Video requires dedicated bandwidth, no contention

Video Challenges

● News and sports video can spike very quickly (Airport
emergency in Iceland)

● 'Fair' load balancing of viewers didn't make sense
because different streams had different bitrates, some
were audio only, some servers have more capacity

● We wanted to factor geography into the load balancing
● Very important to not send viewers to overloaded

servers, breaks stream for existing viewers
● Therefore, measuring network and application health is

essential
● Prefer to deliver from closer nodes, but not married to it
● We don't control the customer's app, so layer7

balancing was not really an option
● How do we apply these business rules to DNS?

spiky video graph

very spiky video graph

What is a GSLB?

A Global Server Load Balancer handles the
direction of traffic to different nodes with a
focus on geo-location, and (depending on the
vendor) a "bunch of talk" about high availability
and optimal response time.

In our case, the GSLB routes traffic to edge
servers, near the requestor, to provide lower
latency and spread load between a number of
data centers, as well as automatically diverting
traffic from downed servers

What Is Out There Now?

● Commercial Vendor Solutions such as
Barracuda Networks - Requires a device and
subscription at each location, configuration
changes must be manually input on each device
by an operator.

● Response Policies are quite limited: either
Region, or GeoIP

● Cumbersome non-automated updating
● Sometimes limited monitoring
● Not open, closed version of Linux
● Expensive

● Bind9 with Views - Summarize subnets from a GeoIP
database and create views, uses excessive amounts of
memory and takes a while to reload config, requires
separate zone file for each view, all zones must be in
views, only considers resolver IP, breaks master-slave
replication, no monitoring

● Bind9 with GeoIP Patch - Interface with GeoIP via C
API, slow to patch for new Bind releases, only considers
resolver IP, no monitoring

● PowerDNS w/ Geo Backend - Only reads rbldnsd
GeoIP maps

● Anycast - limits flexibility, not application aware without
effort, so you dont get automated pool management

Open Source

The Current Solutions

Layer Cost Manageability Scalability Configurability EDNS-CS

Barracuda TCP

Bind9 w/ Views DNS

Bind9 w/ GeoIP DNS

PowerDNS w/
GeoIP

DNS

Anycast IP

gDNSd DNS

gDNSd to the rescue

● Fast authoritative only DNS server
● Supports EDNS Client Subnet draft
● Reads Maxmind GeoIP binary databases
● Monitoring plugins, flapping detection
● Response plugins

○ Simple Failover
○ Multi-Failover
○ Weighted Response
○ Geographic Multi-failover

● Extension of standard BIND zone files
● Limit number of addresses in response
● We created dns/gdnsd because it wasn't there

gDNSd zones

● Zones are typical BIND zones (only some
record types are supported)

● Two important new types, DYNA and DYNC
● DYNA records take a plugin name and

resource name, and returns 1 or more IP
addresses

● DYNC records take a plugin name and
resource record, and returns a CNAME

● Supports Includes and response record size
limiting

Response Policy

A number of factors can go into defining a
Response Policy:
● Active/Passive Failover, or Active/Active

load balancing?
● Binary Node Health: Up/Down
● Advanced Node Health: CPU, I/O or Net
● Requestor Location
● Which nodes to use when
● How many nodes to return in a response

gDNSd Basic Plugin Config
 multifo => {
 up_thresh => 0.3,
 service_types => default,
 pubwww => {
 service_types => [corpwww_type, default],
 addrs_v4 => [192.0.2.100, 192.0.2.101, 192.0.2.102]
 addrs_v6 => {
 service_types => [up],
 up_thresh => 0.7
 lb01_v6 => 2001:DB8::1,
 lb02_v6 => 2001:DB8::2,
 lb03_v6 => 2001:DB8::3,
 }
 }
 v4www => {
 lb01 => 192.0.2.200,
 lb02 => 192.0.2.201,
 lb03 => 192.0.2.202,
 }
 }

GeoDNS Gotchas
● GeoIP data is not always correct
● The source IP of DNS requests is not the client, but their

resolver, usually their ISP, but maybe also Google or
OpenDNS
○ EDNS0-Client-Subnet an IETF draft to have recursive

servers include the /24 of the requesting client as part of
the DNS request, gDNSd can read this any do GeoIP on
the client ip instead of the resolver ip

○ Supported by Google DNS and OpenDNS but requires
you be on their whitelist

○ Google's servers use Anycast, requests actually come
from a unicast ip, but GeoIP places them all at the
GooglePlex in California, even when they are in Europe

○ We use manual overrides to map Google and OpenDNS
resolver IPs to their actual location

gDNSd GeoIP Config (Auto)
geoip => { maps => { se-automap => {

geoip_db => /usr/local/var/gdnsd/GeoLiteCity.dat
datacenters => [TOR1-1, SEA1-1, LAX1-1, PHX1-1, CHI1-1, CHI2-1, DFW1-1,

 ATL1-1, NYC1-1, FRA1-1, FRA2-1, DEU1-1, AMS1-1, AMS2-1, RTM1-1]
auto_dc_coords => {

 TOR1-1 => [43.6532260 , -79.3831843], SEA1-1 => [47.4938270 , -122.2933670],
 LAX1-1 => [34.0482680 , -118.2549910], PHX1-1 => [33.4159838 , -112.0084724],
 CHI1-1 => [41.9898460 , -87.9564730], CHI2-1 => [41.8781136 , -87.6297982],
 DFW1-1 => [32.8395269 , -96.8649300], ATL1-1 => [33.7555614 , -84.3914132],
 NYC1-1 => [40.7084175 , -74.0071869], FRA1-1 => [48.8566140 , 2.3522219],
 DEU1-1 => [49.4451843 , 11.0874220], AMS1-1 => [52.3702157 , 4.8951679],
 AMS2-1 => [52.3702157 , 4.8951679], RTM1-1 => [51.9242160 , 4.4817760],

}
nets => {

 65.39.148.0/28 => [TOR1-1, CHI1-1]
}

} } }

gdns GeoIP Config (advanced)
geoip => { maps => { se-region-map => {
 geoip_db = /usr/local/var/gdnsd/GeoLiteCity.dat
 datacenters => [DC-AF, DC-AS, DC-EU, DC-NA, DC-OTHER
 DC-EU-DE, DC-EU-FR, DC-EU-NL, DC-EU-UK, DC-NA-CA]
 map => {
 AF => { default => [DC-EU] }
 AS => { default => [DC-AS, DC-OTHER] }
 EU => {
 DE => [DC-EU-DE, DC-EU], FR => [DC-EU-FR, DC-EU],
 NL => [DC-EU-NL, DC-EU], GB => [DC-EU-UK, DC-EU],
 default => [DC-EU]
 }
 NA => { CA => [DC-NA-CA, DC-NA], default => [DC-NA] }
 default => [DC-OTHER]

}
} } }

gDNSd GeoIP Config (continued)
resources => { se-full-esc => { map => se-region-map,
 service_types => [varnish],
 dcmap => {
 DC-NA => {
 varnish_sea1-1_a = 64.120.19.11, varnish_lax1-1_a = 64.120.9.155

varnish_phx1-1_a = 108.62.112.147, varnish_chi1-1_a = 23.19.122.43
 varnish_dfw1-1_a = 173.208.17.139, varnish_nyc1-1_a = 173.208.58.19
 },
 DC-EU => {
 varnish_fra1-1_a = 94.23.84.74, varnish_deu1-1_a = 188.40.87.24
 varnish_ams1-1_a = 94.100.21.179, varnish_ams2-1_a = 213.152.180.200
 varnish_rtm1-1_a = 213.163.66.251, varnish_rtm1-1_b = 213.163.66.251
 },
 }
} }

Monitoring
service_types => {
 varnish => {
 vhost = "www.appfail.com"
 url_path = /
 port = 80
 interval = 90
 timeout = 6
 up_thresh = 10 #10 good checks in a row to go from DOWN to UP
 ok_thresh = 5 #5 good checks in a row to go from DANGER to UP
 down_thresh = 2 #2 fails moved server from DANGER to DOWN
 plugin = http_status
 }
}

Taking monitoring to the next step

We created custom HTTP responders to point gDNSd
monitoring at
● Video Servers return an XML document detailing

viewers and bandwidth usage
● If bandwidth is above a configured threshold, HTTP

response code is 500 instead of 200
● New viewers are directed to servers that are not over

threshold
● gDNSd 'up_thres' causes all servers to be returned if all

servers are above threshold (fallback for false positives
or huge load)

● CDN node responder checks disk i/o which is high after
a restart (cache warming is expensive)

Running out of Bandwidth

This all works great, downed and loaded servers come out
of the pool, and users generally get a good experience.
When traffic is very high, gDNSd adds all servers back into
the pool, our thresholds are conservative because packet
loss kills video, so this works for a while
gDNSd can also fail over to different regions, if we are out
of bandwidth in Europe, use the North American servers

Eventually, we are just out of servers, now what?

Amazon Web Services

Amazon EC2 to the rescue

The HATE Algorithm
"High Availability Through EC2"

The Amazon HATE Algorithm

We HATE to use Amazon because they are very
expensive, but we hate being down even more
Capacity Manager script polls the stats interface on each
gDNSd node. Servers and resources are named according
to our geographic naming scheme
● We are out of Capacity in EU, spin up EC2s in EU zone
● Elastic IPs are preconfigured in DC-of-last-resort
● Load shifts to EC2s, anti-flapping keeps our servers

from being 'up' again, servers must pass low-traffic
threshold to return to 'up' status

● Once our servers are back up, Capacity Manager polls
Amazon for running instances, check load/viewer count
on each, once this is low, terminate instance

Conclusions

● distance (latency) adds to object delivery delay, multiple
round trips, performance for HTTP objects suffers

● Video performance lags if tcp has to retransmit, rtmp
clients and iOS HLS clients buffer and delay relative to
real event time

● proximity to client helps for HTTP, especially varnish
(low app latency)

● proximity is less important with video but still nice to
have

● video is more about transit quality to avoid retransmits,
buffering and lag

● cache warming is slow, performance is uneven

More Conclusions

● Because our expertise is in running freebsd servers, not
border routers, an application layer solution is an
appropriate limitation on solution

● With GSLB, having various network transit providers
becomes an advantage instead of a limitation

● automatically recover from overloaded server or
provider transit issues

● complete global view, pools per service, pool 'stages'
● We are able to automate pool management
● with some effort, application health and server network

utilization become pool membership criteria

