
Booting from
Encrypted Disks on
FreeBSD
Allan Jude, ScaleEngine Inc. allanjude@freebsd.org

Abstract
FreeBSD has supported full disk encryption

with GBDE and GELI since 2002 and 2005
respectively. However, booting the system required
storing the loader and kernel unencrypted so that the
requisite GEOM module could be loaded to handle
decryption. This becomes a significantly larger
challenge with the introduction of the ZFS file
system, as having multiple separate partitions detracts
from the advantages of ZFS, and also causes
headaches when performing operating system
upgrades. With the availability of ZFS Boot
Environments, a solution that allowed the kernel and
loader to remain part of the primary file system was
desired. It was also desirable for it to support
encryption. This paper provides an overview of the
design of the GELI enabled boot code and loader, as
well as the numerous challenges encountered during
their development.

1. Introduction
The GEOM[1] framework provides an

infrastructure in which “classes” can perform
transformations on disk I/O requests as they transit
from the application to the device drivers and back.

One such GEOM class is GEOM_ELI, or
GELI[2], which supports multiple modes of AES[3], as
well as a number of other ciphers. As blocks pass
through the GELI class they are encrypted or
decrypted. Additionally, GELI also supports optional
authentication, where the content of the block is
verified with an HMAC[4].

The FreeBSD boot process on the i386 and
amd64 platforms is rather involved, and for historic
reasons is performed in many individual steps[5]. This
is further complicated by the fact that there are three

supported partitioning schemes on these platforms:
MBR, BSD, and GPT. This work has yet to be
extended to cover UEFI.

1.1 Booting MBR
On disks formatted with the MBR[6]

partitioning scheme, the BIOS[7] reads the first 512
bytes of the boot disk and runs the boot code that
resides there. In FreeBSD this code is referred to as
boot0. This code then finds the active slice, and

reads the first 512 bytes of it, called boot1. That is

then run, and in turn reads the first sixteen 512 byte
sectors of the slice, which contain the boot1 +

boot2 programs. boot2 is the first of the programs

that is not limited to a single 512 byte sector, but
instead is limited to 7680 bytes (15 of the 16 reserved
sectors at the start of the UFS slice, the first being
boot1). boot2 is a small program with just enough

knowledge of the UFS file system to find
/boot/loader and a kernel, and to interactively

allow the user to select a different partition from
which to read the kernel. boot2 reads

/boot/loader (also known as boot3) from the

UFS partition and executes it. The loader is a fully
interactive program that draws a menu and allows the
user to control the startup of the system. The loader
presents an interactive menu, and then proceeds to
load the kernel and executes it, and the operating
system is started.

For ZFS, the procedure is slightly different,
boot0 loads a different boot1 file, which finds the

64KB zfsboot (analogous to boot2) at an offset

of 1MB into the ZFS partition, in a predetermined
blank space in the ZFS on-disk format. The
zfsboot code understands the ZFS file system and

loads /boot/zfsloader, which provides an

interactive menu similar to that of /boot/loader
for UFS, and can then load the kernel and boot the
OS.

Support for booting encrypted MBR drives
is not provided due to these size constraints.

1.2 Booting GPT
GPT[8] partitioned disks are booted in a more

straightforward manner. A GPT partitioned disk still
contains a dummy MBR, called a PMBR or

Protective MBR. The purpose of the PMBR is to keep
other operating systems from misidentifying the disk
as unpartitioned, and offering to reformat the disk for
the user. The PMBR starts the boot process in a very
similar fashion to an MBR, with a single 512 byte
sector that is read and executed. With GPT, a
dedicated partition is provided to contain the
remaining bootcode, analogous to boot1+boot2.

The PMBR reads up to 545KB from this boot
partition and executes it. This limit is specific to the
FreeBSD PMBR boot block implementation and
could be changed if required. Users can install one of
a number of bootcodes to this partition, the most
common being gptboot and gptzfsboot. These

boot blocks consist of two parts, gptldr, a small

assembly program that relocates the code loaded from
disk to the correct memory address and executes it,
and gptboot or zfsboot respectively, analogous

to boot2. gptboot loads and launches

/boot/loader from a UFS formatted disk, while

gptzfsboot loads and launches

/boot/zfsloader from a ZFS pool.

1.3 Motivation
The main goal of this work was to allow

ZFS Boot Environments to be used in combination
with full disk encryption. This was not previously
possible because booting from an encrypted disk
required the bootloader and kernel reside on a
separate unencrypted partition. Having the bootloader
and kernel outside of the boot environment defeated
the primary purpose of boot environments, to allow
different versions of the OS to be installed
concurrently. Having the kernel outside of the root
file system also complicated upgrades.

2. Investigation Stage
For an initial implementation, a copy of

gptzfsboot was made with the name

gptgeliboot. The original idea was to create a

single bootcode that could boot from an encrypted
UFS or ZFS file system. Subtle differences in bits of
the boot2 code, and no clear way to define the

behaviour of systems that use both UFS and ZFS file
systems, caused this approach to be abandoned. It
was decided to implement optional GELI support in
each of the existing GPT bootcodes instead.

Initially, it was necessary to determine if the
system boot partition was GELI encrypted. As with
most all GEOM classes, GELI stores its metadata in
the very last sector of the provider, which is usually a
partition, to avoid conflicting with the backup copy of
the GPT partition table that is stored in the last sector
of the disk. The task seemed simple, read the partition
table, identify the starting LBA of the partition and its
size, and read the last sector of that partition. This
turned out to not always be so simple. The function
that reads from the disk, drvread(), takes a

struct dsk as a parameter, which has a ‘start’

member that may be set to the beginning of the
partition, which makes the offset parameter relative to
the start of the partition, rather than to the start of the
disk, but it isn’t always set.

After reading through
sys/boot/i386/zfsboot/zfsboot.c, it was

discovered that ZFS might just have made this easier;
rather than reading from the disk directly,
vdev_probe() takes a pointer to a function that

would read from the disk, and a pointer to an opaque
structure that will be passed to that function to
identify the disk. A duplicate version of the existing
callback function, vdev_read(), was created that

would pass the disk blocks through the GELI decrypt
function before returning them. This approach would
later be replaced with a check to see if the partition
being read was GELI encrypted, to avoid the code
duplication.

The hardest part about working in the
bootcode is that there are no error reporting facilities.
There isn’t even a panic(). Pretty much all there is

to work with is printf(), and when things go bad,

the system just hangs, unless you manage to crash the
BTX loader, which will give you a dump of the
assembly instruction pointers and the like. This made
development very iterative and almost brute force.
Make a change, build, install it, reboot, fail, add
printf, build, install, reboot, fail, repeat. Of course,
you must moderate the quantity of printfs, because
there is no pager; once data scrolls off the top of the
screen, it is gone forever.

3. Initial Implementation
After the partition has been determined to

contain encrypted data, the metadata needs to be read
to determine which algorithm to use to decrypt it.
Then the encrypted copy of the master key must be
decrypted with the user provided password, and only
then is it possible to read from the partition. To
proceed, an implementation of AES simple enough to
be used in the bootcode was required. GELI itself
uses the kernel crypto framework, or openssl if run in
userland. Neither of these are an option in the
bootcode. Some initial google searching turned up a
small AES-CBC 128 implementation with an
acceptable license. This was dropped into the
bootcode, along with some copy/pasted functions
from GELI itself, to decode the metadata, decrypt the
master key, verify it is valid, and take care of tasks
such as determining the sector encryption key, and
the unpredictable IV.

Now the rest of the dependencies needed to
be solved. Elsewhere in the bootcode, when existing
functionality is required, it is often just directly
included into the source code using the preprocessor
#include directive. GELI uses both SHA256, for
generating the unpredictable IV for AES-CBC, and
SHA512 for the various HMACs. The first method
attempted was just directly including the
sha256c.c and sha512c.c files from the kernel

crypto implementation, but the SHA256 and
SHA512 implementations declare different macros
using the same name, but with different content. The
next approach was to add them to libstand32, the
stripped down version of libstand that is used in the
bootcode. Eventually this approach was modified to
create a separate libgeliboot, with most of the bits
required for GELI in the bootcode, to avoid bloating
libstand32 or the bootcodes that depend on it. But this
approach, isolating GELI in the bootcode, brought its
own set of obstacles that made it not always work.

The initial versions of this work statically
defined the password as "test" to avoid the perceived
complexity of creating an input prompt in the
bootcode. This turned out to be a fairly trivial
undertaking, although that didn't stop it from
eventually being re-implemented, twice. The first
rendition duplicated the getstr() implementation

from sys/boot/i386/common/cons.c and

changed it to echo an asterisk, rather than the
character that was typed. Not only was this probably

unnecessary code duplication, but the loader did not
actually use that file and instead used
sys/boot/common/console.c which didn’t

have a getstr() implementation. Worse, the

getstr() from cons.c wouldn’t work, because it

didn’t use getchar() but its own xgetc(). On

top of all of this, in later review it was determined
that the getstr() implementation in cons.c has

a bug in it, where the echoing of the character is not
inside the conditional statement that checks that the
number of characters entered has not exceeded the
requested limit, and that buggy version has been
copied into a number of different files, including the
i386 boot2.c. Cleaning that up is future work. In

the end, a modified version of ngets() from

libstand (originally from NetBSD) was used to create
pwgets() which was placed in the newly created

libgeliboot.a.

4. First Roadblock
So now it appeared we had everything

required to do a first boot from an encrypted ZFS
partition. The system would load boot0, which

would read the new gptzfsboot from the freebsd-

boot partition. The boot1 part of that code would

then relocate boot2 to the correct location in

memory, and run it. boot2 would start, taste the

partition, determine it was GELI encrypted, read the
master key, prompt the user for the password, decrypt
it with the passphrase, and stand ready to determine
the sector key and decrypt each block as needed.

The bootcode was then installed in a virtual
machine with a GELI encrypted disk. The first
attempt to boot the VM in VirtualBox didn’t go so
well. What is a triple fault anyway? And why does it
cause VirtualBox to crash? Attempts to boot on real
hardware caused a continuous reboot loop.

It turns out that when gptldr.S was

written, the author uttered the immortal words "$X
ought to be enough for anyone". The entire point of
ZFS was to do away with such arbitrary limits that
will be "good enough for now". The gptldr is not

part of ZFS, so we mustn’t fault its author for this
seemingly arbitrary limit. The assembly code used to
boot the system is 16 bit, so copying more than 64KB
of data at once is more complicated. Up until this
point, no bootcode was really in danger of hitting this

limit, gptboot for UFS was not even 16KB, and

gptzfsboot was only 42KB. However, now

gptzfsboot has grown an AES implementation,

both SHA256 and SHA512, and the important bits of
GELI, leaving it on the heavy side of 90KB, and the
work was not done yet. It turns out trying to boot with
only the first two-thirds of the bootcode causes crazy
things to happen. This would turn out to be a hard
problem to solve, so it was decided to work around it
in the meantime.

5. Booting from encrypted UFS
Work then started on implementing GELI in

gptboot, for booting from encrypted UFS. The

original size of gptboot (under 16KB vs

gptzfsboot's 42KB bulk), meant there was more

room for the new code to still remain under the 64KB
limit. The code to read from UFS is quite a bit
different from that of ZFS, but again the function
responsible for reading from the disk was identified,
and could be modified to GELI decrypt the blocks on
their way from the disk to the UFS code. Of course,
the GELI decrypt function that had just been written
was designed to have the same prototype as the
callback that ZFS used to read the disk. The easiest
solution was to just adapt the UFS code to use the
same prototype, and just not use the extra parameters.

Predictably, it was not that simple. In the
very limited environment of the bootcode, there is no
kernel yet, or libc, or even malloc(). So where

does memory come from? Well, luckily zfsboot
needs a bit of memory, so has an implementation of a
very limited malloc() that consists of a cursor

pointing to an address on the heap, and each
malloc() would just increase that pointer by the

amount requested, until the limit is reached, which
can be as little as 3MB. The obvious downside to this
simple approach is that there is no free(), so one

needs to be very careful to avoid making a large
number of allocations. This environment is also
severely limited on which C library calls can be used;
only a small subset of libstand is available. This also
makes code reuse more difficult, as many of the
standard .h files try to pull in string.h or other

headers, which conflicts with stand.h.

At this point, after a bit of fiddling to get the
decryption working properly, the first successful boot

from an encrypted file system was achieved. Of
course, successful is a bit of an overstatement at this
point. gptboot had loaded /boot/loader which

immediately errored out because it was unable to find
a kernel, because the filesystem was full of encrypted
gibberish, not a UFS filesystem. The loader still
needed to be taught about GELI.

Finding the spot in the loader where data
could be intercepted as it flows from the disk to the
file system is a bit more involved. The first path that
seems to present itself was to make additional
"filesystems", geli_ufs and geli_zfs, adding those to
the struct the loader uses to interpret the different
filesystems. Eventually after mentally resolving much
indirection, the author found the biosdisk part of
libi386 that is the bottom of the indirection chain.
When a disk is opened, we taste it for GELI, and if it
is GELI, all reads are decrypted before they are
passed back up the chain.

Now libi386 can transparently decrypt the
sectors as they are read from the disk, and the loader
is able to read the kernel. At this point the author had
the first successful boot of a UFS encrypted file
system, into multi-user mode. Of course, at this point
it only worked if your GELI password was "test" and
if you had used AES-CBC with only a 128bit key. Of
course, the original goal was to be able to boot from
an encrypted ZFS pool. The author was only working
on the UFS bootcode and loader to prove the concept,
in hopes of eventually solving the limitations of
gptldr. The supposedly impossible task now

seemed pretty much done, or so was thought.

6. Breaking The Limits
The author tried just about everything to

shrink the new GELI enabled bootcode: marking
almost every function as static, ripping out every
unused byte, trying to optimize manually, and with
the compiler (-Os rarely seems to actually save many
bytes, -O2 turns out to be bigger than -O1). This
approach obviously wasn't going to work, the
gptldr assembly problem was going to need to be

solved.

First, the naive approach was tried,
modifying gptldr.S and changing the variable that

controlled the number of 512 byte sectors to relocate
in memory from 0x80 (128) to 0x100 (256).

However, when the compiler digested this, it laughed
and set the variable back to 0x80. “This is 16 bit
assembly, what do you think you are doing”. So then
the author tried making the bootcode 32 bit, changing
all of the %si to %esi etc, but that just crashed it even
faster. So the author approached one of his mentors,
Eitan Adler, for a bit of help with the assembly. At
first Eitan seemed receptive to making the minor
changes required to either make the assembly 32bit,
or make it copy two blocks of 64KB instead of just
one. It turned out he was too busy to spend much time
on it, understandable. Next, the author asked John-
Mark Gurney, who looked at the assembly, and again
initially seemed receptive to doing the bit of work on
it. However once he started reading the original code
and understood the scope of the problem, he was
quick to suggest seeking help from someone else. So
the author approached John Baldwin, the original
author of gptldr. Baldwin's suggestion was to find

a different way to solve the problem, like keeping the
loader unencrypted in a small partition or some other
similar hack. Then at vBSDCon Peter Grehan heard
of the authors troubles and offered to help, but again,
after coming to understand the scope of the problem,
was quick to demonstrate how to use gdb attached to
qemu to debug why the previous attempts to modify
gptldr were crashing. A friend of the author, Dylan

Cochran, was also at vBSDCon and made a number
of valiant attempts to rewrite the assembly, but didn't
manage to finish it during the conference, and was
quickly distracted by work once back at home. Then
finally, at the EuroBSDCon 2015 Developers Summit
in Stockholm, Sweden, Colin Percival heard about
the apparently unsolvable assembly dilemma, and
said something to the effect of "16 bit assembly, I
know this". It turns out that 16 bit assembly was the
last assembly Colin had even dabbled with, and he
was intrigued by the problem. Colin came up with a
few draft patches during the conference hacker
lounges, but they too just crashed the BTX loader.
Again the author’s hopes were dashed. A few days
after returning from Sweden, Colin contacted the
author via IRC and presented another version of the
assembly patch. This one didn't copy any more bytes
than the current one, but did the copy in Colin's new
extensible way. It worked for copying the normal
bootcode. A revision or two later, and now there was
a gptldr.S that could copy a variable number of

32KB blocks. Work could finally progress.

7. Supporting Additional Ciphers
So now, we can boot ZFS as well, because

our over-sized bootcode is now perfectly valid, and
no longer gets truncated. The next step was to
actually support encryption modes that people might
actually want to use. Why not just reuse the AES-
XTS implementation that is already in FreeBSD as
part of the opencrypto framework? Including
sys/opencrypto/xform.c pulls in EVERY

supported algorithm, and their necessary
dependencies. The bootcode could now be larger, but
it was still preferable to keep it small, as it must fit in
the freebsd-boot partitions existing users already
have. The first approach was to copy/paste just the
bits required to get AES-XTS to work into a new file.
This created geliboot_opencrypto.c, with a

copy of the AES-XTS implementation, and
geliboot_aes.c with a copy of the required files

from sys/crypto/rijndael/, and finally parts of GELI
scattered in geliboot.c and

geliboot_hmac.c. It was rather messy, but after

much trial and error, and looking at endless streams
of printf's of before/after decryption of each sector
and comparing those to printf's added to the real
GELI module, it worked. Now encrypted boot
worked for both file systems, and it supported both
AES-CBC and AES-XTS with either 128bit or 256
bit keys.

The next task was to clean it up and get it
into a shape that might actually be accepted by the
FreeBSD project. Again back to trying to reuse more
code and stop with the copy pasta. The first and most
obvious target was the AES algorithm itself. Can we
just #include it instead? The first problem to solve is
the conflicts from string.h, which turns out to be

fairly easy to cheat our way around. Just define
_STRING_H_ and when rijndael-alg-fst.c
goes to include the standard header it thinks it has
already done so, and skips the content of the
string.h file. So now geliboot.h just includes

rijndael-alg-fst.c and rijndael-api.c
and we're on our way. Of course, this approach didn't
work for AES-XTS, because xform.c provides

every algorithm, including Blowfish, Camellia,
CAST5, DES, 3DES, Skipjack, and a few others, plus
a set of HMAC algorithms for every hashing
algorithm under the sun, and deflate compression. In
the meantime, our local copy/paste of AES-XTS had
been modified to avoid the need for a malloc(),

and to pass the raw context struct around, rather than
pointers to it. After discussion with the FreeBSD
Security Team, the author was told they could break
up xform.c if need be, so the work started in

earnest. In an attempt to make the patch easier to
review, svn copy was used to make a copy of
xform.c for each family of algorithms. Then all of

the other algorithms were removed from all but one
of the copies. The resulting diff showed many
removed lines, making the diff rather large and
probably harder to review, but it also showed that not
many lines of code had actually changed. It is not
clear if this approach turned out to be that beneficial
in the end. The refactoring took a few iterations to get
right, especially deciding what code went in the .h
files versus the .c files. The first, incorrect, approach,
was to remove the 'static' qualifier from the
definitions of the functions so that the
aes_xts_decrypt() symbol would be exported

so it could be used in the bootcode. Later it was
explained that the way opencrypto works is that a
struct for each algorithm is exported with pointers to
the setkey, encrypt, decrypt, reinit, and zerokey
functions, and that this should be used instead. The
other issue was that opencrypto was designed for use
in the kernel, so included some kernel headers. These
were easily ifdef'd out of the way, but opencrypto
also used the kernel's malloc() facility, which

takes 3 parameters, rather than the usual 1. The kernel
malloc expects a previously defined class for each
memory consumer, as well as a series of flags. To
work around this xform_userland.h was created

to define macros for malloc() and free() to

strip off these extra parameters when used in
userland. In the end, opencrypto cleaned up rather
nicely. After review by the FreeBSD Security
Officer, Xin Li, and George Neville-Neil, the newly
broken up version of opencrypto was committed to
the FreeBSD base system in the last few days of
2015. Then it came time to try to reuse more of
GELI, and remove the excessive copy and paste. A
lot of the GELI code had survived unmodified, except
for one parameter, the g_eli_softc, the struct

used to track the internal running state of each
instance of the GELI module. In the local version of
the code, geliboot had passed around the much

smaller GELI metadata struct. With a bit of
refactoring, all of the callers of the GELI functions in
the bootcode were updated to use the
g_eli_softc struct.

GELI itself required some modifications to
support its code being reused outside of the kernel. A
number of ifdef's were added to mask chunks of code
specific to the kernel. A number of macros and structs
were moved from .c files to g_eli.h as they were

depended upon in the bootcode. In the case of the
HMAC functions, they were extracted to a separate
file to separate them from the kernel specific crypto
implementation. After the refactor, only a single
function from GELI needed to be reimplemented
locally in geliboot. g_eli_crypto_decrypt was

made to use the kernel's AES implementation and
opencrypto's XTS implementation, as the version in
GELI used the kernel crypto framework or OpenSSL.

8. Password Caching
At this point, the system can be booted, but

it prompts the user for the encryption passphrase an
inordinate number of times. The test system was a
ZFS mirror of two disks. gptzfsboot would

prompt for the password for each of the two disks,
then load the loader. The loader would then prompt
the user for the passphrase for each disk, and load the
kernel. At the mountroot prompt, the kernel would
prompt for the passphrase for each disk, and finally
the system would boot. With more than a few disks,
this quickly becomes exceedingly cumbersome. Colin
Percival, Devin Teske, and Kris Moore had already
been suffering from similar problems and developed
a solution. Colin implemented the
kern.geom.eli.boot_passcache sysctl,

which caches the password entered by the user at the
mountroot prompt and attempts to reuse it on each
new disk that is tasted during the boot process. This
was extended with Colin’s help by Kris Moore, to
allow the passphrase entered in the GRUB2 boot
loader to be passed via the kernel's environment to
GELI, so that if the password was correct, it would
avoid re-prompting for the password at the mountroot
phase. This avoided the issue where the mountroot
password prompt would become buried by late device
attach notices. Devin Teske added an option to
l o a d e r . c o n f ,

geom_eli_passphrase_prompt, that would

cause the loader to prompt the user for the GELI
passphrase ahead of time, and pass it to the kernel via
the environment, the same way PC-BSD’s GRUB2
was doing it, again with the goal of avoiding the
mountroot prompt. Extra care was taken by the GELI

kernel module to zero the passphrase from the
environment before single user mode starts.

The obvious approach was to make the
loader pass the passphrase to the kernel using the
existing mechanism. In addition, the password
prompt that was implemented in the loader for its
new GELI support was also given a similar caching
mechanism whereby it automatically tries the
previously entered passphrase, and only if that fails,
gives the user 3 attempts to enter the correct
passphrase. The number of password prompts to boot
the system was reduced from 6 to 3.

The same “try the previously entered
passphrase” mechanism was then implemented in
gptboot and gptzfsboot, reducing the number

of password prompts to 2, assuming the user used the
same passphrase for each disk. Then came the
question, how to pass the passphrase from the boot2
stage, to the loader. The answer lay in
gptzfsboot, where a flag is set,

KARGS_FLAGS_EXTARG, which tells the loader to

look for an additional argument after the end of the
regular set of arguments. Here, it will find struct

zfs_boot_args, containing information such as

the pool that is being booted, and the root filesystem.
The first member of this struct is ‘size’, which is set
to sizeof(struct zfs_boot_args). This

allows the loader to safely access newer members of
the struct, by first checking that the offsetof()

the member is not greater than the sizeof() the

loader's definition of the struct. This allows
mismatched versions of the bootcode and loader to
continue to work together. When a new member is
added to the end of the struct, access to it is guarded
by this mechanism. Using this design pattern, a new
member was added to the zfs_boot_args struct

to pass the GELI passphrase from boot2 to the

loader. For UFS support, the
KARGS_FLAGS_EXTARG flag was previously

unused. Following the same pattern again, the flag is
set, and a new struct ufs_boot_args was

created. At this time it only contains the GELI
passphrase cache, but it too starts with the size
member so it could be extended in the same fashion.

9. Conclusions
After assessing how complicated it is to boot

the x86 architecture, one may question whether it is
worth increasing the complexity to incorporate disk
encryption. However, a large number of users have
expressed a desire for GELI encrypted root-on-ZFS.
This project was quite a harrowing learning
experience, but the end result is a working
implementation of GELI in the bootcode and loader.

The remaining goal is to build a GELI
enabled EFI loader in time for FreeBSD 11.0. The
recently completed work to add ZFS to the EFI loader
included modular filesystem support, making it easier
to add new filesystems in the future. It is unclear at
this time whether a generic GELI module could be
used with all filesystems, or if GELI support will
need to be added to each existing filesystem module.

Due to the space constraints, support for
booting from encrypted disks partitioned with MBR
does not seem feasible. With the author’s previous
work on bsdinstall, building workarounds for
firmware bugs that impeded the adoption of GPT, it is
hoped that use of MBR will rapidly decline.

When the work started, it was uncertain if it
would ever accomplish anything. Each roadblock
seemed like it might spell the end of the effort. The
constrained environment of the bootcode made
debugging tedious, often leaving little recourse other
than spamming printf() and repeatedly cycling

the virtual machine. As it turns out, almost anything
can be accomplished with a large dose of persistence
and sage advice from the experts.

10. Future Work
There is much to be done still, but the

biggest remaining item is to add support for GELI
key files. In an original setup created by bsdinstall's
“zfs auto” mode, these files would sit on the
unencrypted boot partition, alongside the kernel.
However, the goal of this work was to remove the
necessity for that unencrypted partition, but the key
files are now left homeless. Some more advanced
users might keep the keys on USB devices, but not all
users will want to do this. Some possible approaches
are:
● Storing the keys on a USB Device

○ Pro: Separation of the keys from the
encrypted disk

○ Con: Your laptop will have to have this USB
device hanging out of it each time it is booted

○ Con: how reliable is access to ephemeral
USB disks during the bootcode?

○ Con: New devices cannot be attached during
the bootcode

● Making a small UFS partition to keep the keys in
○ Pro: easy key management
○ Con: can be difficult to find space in an

already partitioned system
● Storing the keys in a new raw partition type,

freebsd-gelikey
○ Pro: Low space overhead, partition only

needs to be a few bytes larger than the key, to
store a header indicating the length of the key

○ Con: can be difficult to find space in an
already partitioned system

○ Con: Key management is harder, will require
a new utility to manage the keys

It may be worth adding additional
cryptographic algorithms, like blowfish and camellia
to the bootcode, but at this time AES seems most
popular because of the performance advantage of
AES-NI[9]. AES-NI is not used during the boot
process, but the number of reads from the encrypted
disk is quite low, so there is little performance to be
gained.

There are some possible optimizations to
GELI itself, in the case of AES-CBC, the
unpredictable IV is generated using SHA256, while
SHA512 (or SHA512t/256, a version of SHA512
with a different IV truncated to 256 bits), is ~50%
faster on 64 bit hardware. For those with performance
concerns, AES-XTS seems to be the more popular
option anyway.

Support for GELI’s sector authentication.
This feature is not recommended for use by the
original author of GELI anymore, so implementing
support for it in the bootcode does not seem
especially attractive at this time.

Another remaining item is to support
systems booting with UEFI. When this work was
stalled waiting on a solution to the 64KB bootcode
limit, investigation of UEFI, where the bootcode is a
file on an arbitrarily large FAT partition seemed

attractive. Initial investigation for this work has not
yet begun.

There is also a lot of cleanup that could be
done across the various bootcode implementations, to
extract common bits and unify them, and fix bugs that
exist across all of the bootcodes, like the one in
getstr(). Work to create a single bootcode that

can boot both UFS and ZFS may still be of value, if a
system for deciding which partition to boot from can
be determined.

Acknowledgments
The author would like to thank Kris Moore,

for his continued requests to see this work finished,
Colin Percival, for solving the biggest roadblock in
only a few hours, Baptiste Daroussin for mentoring
me for my src commit bit, as well Xin Li, Pawel
Jakub Dawidek, and Steve Hartland for reviewing the
code. The author also wishes to thank the entire
FreeBSD Community for their support and answering
his endless questions, but especially Devin Teske,
Michael Dexter, Marie Helene Kvello-Aune, Michael
W Lucas, Eitan Adler, and Craig Rodrigues for their
mentorship, friendship, and encouragement.

References:
[1] GEOM: https :// www . freebsd . org / cgi / man . cgi ?
query = geom (4)
[2] GELI: https :// www . freebsd . org / cgi / man . cgi ?
query = geli (8)
[3] AES:
http :// csrc . nist . gov / archive / aes / rijndael / Rijndael -
ammended . pdf
[4] HMAC: http :// tools . ietf . org / html / rfc 2104
[5] FreeBSD x86 Boot Process:
https :// www . freebsd . org / doc / handbook / boot -
introduction . html
[7] MBR:
https :// en . wikipedia . org / wiki / Master _ boot _ record
[8] BIOS:
https :// en . wikipedia . org / wiki / BIOShttps :// en . wikipedi
a . org / wiki / BIOS
[8] GPT:
http :// www . uefi . org / sites / default / files / resources / UEFI
%20 Spec %202_6. pdf (Chapter 5)
[9] AES-NI: https :// software . intel . com / en -
us / articles / intel - advanced - encryption - standard - aes -
instructions - set /

https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
https://software.intel.com/en-us/articles/intel-advanced-encryption-standard-aes-instructions-set/
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
http://www.uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/BIOShttps://en.wikipedia.org/wiki/BIOS
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://en.wikipedia.org/wiki/Master_boot_record
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
https://www.freebsd.org/doc/handbook/boot-introduction.html
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geli(8)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)
https://www.freebsd.org/cgi/man.cgi?query=geom(4)

