
Towards oblivious sandboxing with
Capsicum

Jonathan Anderson, Stanley Godfrey and Robert N M Watson*

May 19, 2017

1 Introduction

Capsicum [Wat+10] is a framework for principled, coherent compartmental-
ization of FreeBSD applications. It is principled in that it draws from a rich
history in computer security concepts such as capabilities, tokens that authorize
their bearers to perform actions such as read from a file (using a file descriptor
as a token almost like a capability) or call a method (using an object reference
as a capability). Capsicum is coherent in that it applies clear, simple security
policies uniformly across applications. It is not possible — as can be the case
in other schemes — to restrict an application’s access to one set of operations
while leaving equivalent operations available for use. When we describe Cap-
sicum as providing principled, coherent compartmentalization, we mean that it
allows applications to break themselves up into compartments that are isolated
from each other and from other applications. Just as privacy-friendly compa-
nies put their users’ data encryption keys out of their own reach, Capsicum al-
lows applications and their compartments to give up certain abilities in order
to protect other compartments, other applications and — ultimately — their
users.

However, a significant limitation of Capsicum today is that it only works
when applications voluntarily give up the right to perform certain actions (the
details of which are explained in the next section). It works with applications
that understand Capsicum and that have been modified to take advantage of it.
Up to now, Capsicum has provided no mechanisms for confining applications
without their co-operation. This is our long-term goal: to put applications into
sandboxes without needing to modify the applications themselves, such that

*This work has been sponsored by the Research & Development Corporation of Newfoundland
& Labrador (contract 5404.1822.101), the NSERC Discovery program (RGPIN-2015-06048) and the
Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contract FA8650-15-C-7558. The views, opinions, and/or findings contained in this
paper are those of the authors and should not be interpreted as representing the official views or
policies, either expressed or implied, of the Department of Defense or the U.S. Government.

1

any vulnerabilities in an application that are exploited by attackers can have
their damage contained within an application’s memory and outputs rather
than granting full access to all of a user’s data and activities. In this article,
we describe recent and ongoing work to advance this agenda, pursuing the
vision of protecting ourselves from vulnerable applications whether they like
it or not.

2 A taste of Capsicum

Today, Capsicum allows applications to protect themselves, other applications
and their users from themselves via two mechanisms:

• capability mode and

• capabilities.

2.1 Capability mode

Capability mode is a way of confining a process to stop it from accessing any
namespaces that are shared between processes such as the filesystem names-
pace, the process identifier (PID) namespace, socket-address namespaces and
inter-process communication (IPC) namespaces (System V and POSIX). Its only
access to files and other system objects is mediated through capabilities, which
are described below. Once a process enters capability mode, it loses all abil-
ity to access these namespaces and it cannot leave capability mode (nor can
any processes forked from it from that point on). This first crucial Capsicum
concept creates a strong isolation: if a process cannot open any resources and
holds no capabilities, it cannot affect the operation of other processes or leave be-
hind any side effects. For applications to do any useful work, however, some
communications and/or side effects are necessary. The key, from a security
perspective, is to ensure that these interactions occur in a controlled way.

2.2 Capabilities

The second crucial concept in Capsicum — the idea of capabilities — allows ap-
plications to be granted access to potentially-shared resources in a controlled
way. Capabilities, as described by Dennis and Van Horn in 1966 [DV66], con-
sist of an identifier or address for an object together with a description of
the operations that may be performed on that object using the capability. In
Dennis and Van Horn’s model, computation occurred within a protection do-
main (“sphere of protection”) and accessed resources using an index into a
supervisor-maintained C-list. This model of userspace performing limited op-
erations on system resources via indices within kernel-maintained arrays should
sound familiar to current practitioners: capabilities were central to the PSOS
design [FN79], which heavily influenced the design of Multics [SCS77], which

2

int fd = open("my -data.dat", O_RDONLY);
if (fchmod(fd, 0777) < 0)

err(-1, "unable␣to␣chmod"); // usually doesn ’t run!

Figure 1: File descriptors allow operations beyond those directly expressed
in a descriptor — in this case, a read-only file descriptor is used to modify
properties of the file.

directly inspired Unix and its file descriptors [RT78]. However, in the journey
from capabilities to modern file descriptors, something was lost in translation:
the rigorous, principled focus on capabilities as monotonic encodings of se-
curity policy (i.e., having a set of allowed operations that can be reduced but
never augmented). The Unix focus on user IDs within filesystems naturally
led to an expansion of the role of file descriptors, such that the set of opera-
tions permitted via a file descriptor included operations that are not expressed
in the descriptor itself but are based on rights encoded in the filesystem. For
example, most Unix-like systems will allow a user to open(2) a read-only file
in a read-only mode and then fchmod(2) it to be a writable file (see listing 1).
This is an example of how file descriptors place more emphasis on the identity
aspect of capabilities than on operations.

Capsicum capabilities restore to file descriptors a rigorous focus on allowed
operations. In FreeBSD 10 and later, every file descriptor is associated with a
set of explicit rights that define which operations may be performed on that
file descriptor1. Outside of capability mode, file descriptors are opened with
all rights to preserve traditional file descriptor semantics. When descriptors
are explicitly limited or derived from other capabilities (e.g., via openat(2) rela-
tive to a directory capability), only those operations explicitly permitted by the
capability may be performed using that capabilitiy. There are capability rights
that correspond to existing open(2) flags such as CAP_READ and CAP_WRITE, but
there are also rights that make formerly-implicit privileges a matter of explicit
policy, such as CAP_SEEK, CAP_MMAP, CAP_FTRUNCATE and CAP_FCHMOD.

Capabilities are monotonic: the holder of a capability may always give up
rights associated with that capability with cap_rights_limit(2), but new rights
can never be added to an existing capability. If a process in capability mode
requires access that it does not already have, it must acquire it from another
process that rightfully has the authority to delegate it. Like all file descrip-
tors, capabilities may be delegated from one process to another via inheritance
or IPC, but because of their strong monotonic guarantees, capabilities can be
delegated with confidence: a capability with CAP_READ can be shared with an un-
trusted process in capability mode with the certain knowledge that it cannot be
used to fchmod(2) the file or perform any actions other than read(2).

1The experimental implementation of capabilities in FreeBSD 9 involved additional indirection:
a struct capability that contained a set of rights and a pointer to an underlying struct file.

3

2.3 Why Capsicum?

Capsicum is a principled and coherent way to construct compartments within
applications. It is principled in that it relies on a conceptually rigorous mech-
anism to enforce clear security policies that can be composed naturally due to
the monotonicity of capabilities. As Linden observed in his 1976 survey of OS
security and reliability [Lin76], “a single general protection mechanism that is
used without exception is better than a rigid one that has many exceptions”.
Capabilities map naturally to many program requirements, as today’s software
is already structured around reference-like access to files as objects with explicit
methods.

Capsicum’s coherence is due to its “deep in the kernel” implementation
and its simple-yet-complete definition of capabilities and capability mode. At-
tempts to provide “shallow” system call wrapping, exemplified by Provos’
systrace [Pro03], are unable to provide the atomicity guarantees that are crit-
ical for security policy evaluation: policy enforcement is weakened when the
objects and operations seen by the kernel are subject to races with the security
policy that authorizes the operations on those objects. Attempts to allow user-
space processes to define their own sets of “safe” system calls, as in Linux’s
seccomp-bpf [Cor12] or OpenBSD’s pledge(2) mechanism [Chi15], can lead to in-
coherent security policies that disallow one type of access to system resources
while permitting an equivalent type of access via another path. This can lead to
an exposure of not-quite-sandboxed processes to malicious data under a false
sense of security. In contrast, Capsicum’s kernel-defined capability mode is
both sufficient and necessary to express isolation from global OS namespaces,
a coherent and easy-to-understand security policy.

The dependability of the provided capability-mode policy leads to an ac-
cessibility programmers seeking to compartmentalize software that fits into
the acquire-resources-then-process-them model of today’s Capsicum compart-
ments (see section 4 on page 6 for a discussion of more complex models). Cap-
sicum also requires no privilege for an application to compartmentalize itself,
in contrast to approaches that rely on mandatory access control (MAC) such as
SELinux [LS01] or AppArmor [BM06] or approaches that rely on Linux names-
paces [Bie06]. Such approaches are accessible to applications with system-
administrator support and/or setuid helper binaries, but Capsicum can be ap-
plied to any program compiled and run by any developer.

3 Compartmentalizing with Capsicum

To take advantage of Capsicum, applications (including forked children of
main application processes) call cap_enter(2) before they are exposed to any
untrustworthy data, e.g., network requests. Once a process compartmental-
izes itself, it can begin performing potentially-dangerous operations such as
parsing network traffic or user data in the confidence that any malicious ex-
ploitation will lead to, at worst, a corruption of the process’ explicit outputs

4

shell

shell

[f]execve(2)fork(2)

[/usr[/local]]/lib

libc
libxx

libyy
working dir

… … … …

application sandboxed
compartment

cap_enter(2)
rtld

library paths

main()

open(2)

Figure 2: Applications can compartmentalize themselves by acquiring static
resources from global namespaces before calling cap_enter(2).

(files, network responses, etc.).
This self-sandboxing approach works well when a process is able to open all

of the resources that it needs before entering capability mode. The most obvi-
ous resources to be opened before compartmentalization are files and sockets,
but in a modern binary, even something as simple as cat(1) or echo(1), dy-
namic linking means that a set of shared libraries must also be loaded before
compartmentalization. As shown in figure 2, the run-time linker runs within a
process, sharing its address space and, on startup, its main thread. Most sim-
ple applications only rely on the run-time linker to find all of their libraries on
startup, after which is is possible to enter capability mode and let the run-time
linker fix up dynamic symbols as required from already-open library files.

Other static resources that a sandboxed compartment might need to access
include explicit files, which can be pre-opened by an application before call-
ing cap_enter(2) or accessed via a pre-opened directory descriptor and then ac-
cessed by the compartment with openat(2) and related system calls (fstatat(2),
renameat(2), etc.). Implicit resources include locale files that are required by
many libc functions, but these can also be pre-opened and their results cached.
More dynamic resources require a connection with the outside world so that a
sandboxed process can ask an unsandboxed process to access to new resources.
This mode of operation is commonly employed in compartmentalized appli-
cations on many platforms, including Web browsers and — perhaps surpris-
ingly — all applications downloaded on MacOS through the Mac App Store,
where all applications requesting access to user files must go through a trusted
UI called a powerbox [App16; Yee04]. To help with these more dynamic ap-
plications’ requirements, FreeBSD includes the libcasper (the Capability Ser-
vices Provider [Zab16]) mechanism to proxy access to named services, some of

5

which (e.g., system.dns) are provided by the system itself.
With pre-opened capabilities, locale cacheing, directory descriptors, libcasper

and external proxies at their disposal, many applications are able to compart-
mentalize themselves with Capsicum. However, this only applies to applica-
tions whose authors are willing to spend the effort required to adopt Capsicum
features and adapt their applications for compartmentalization. More impact
could be attained if we were able to transparently sandbox applications with-
out imposing any additional requirements on their authors, i.e., if we could
employ oblivious sandboxing.

4 Towards oblivious sandboxing

With this goal of oblivious sandboxing in mind, work on Capsicum has been
progressing across FreeBSD’s run-time linker, a new library and a new capability-
aware (but not feature-complete) shell. Recently, some of these components
have begun to bear fruit, leading to an exciting new development: the first
transparent sandboxing of unmodified applications within Capsicum’s capa-
bility mode. The applications that can be executed today in this matter are
very simple, but they execute without access to global namespaces without any
modification: rather than sandboxing themselves, they begin life in a sandbox.

4.1 exec(2) without a name

how we execute the run-time linker directly and pass it a file descriptor
The FreeBSD run-time linker modifications described in this article can be
The traditional approach by which one application executes another is to

first fork(2) a child process and then, from within that new process, to call
exec(2) and start running the new program. The exec(2) system call cleans up
the memory mappings of the current process, closes any file descriptors that
have a O_CLOEXEC flag set (preserving all other open files, together with current
environment variables) and transfers control to the new application. In order to
do this, exec(2) must first find the binary to be executed. Looking up a binary
by name — as in the traditional exec(2) call — would require access to the
global filesystem namespace; this is not permitted in capability mode. Instead,
FreeBSD provides the fexecve(2) system call to execute a binary as specified by
a file descriptor (which can be a capability) rather than by pathname2.

When fexecve(2) runs, it inspects the file passed to it to determine its type
(ELF executable, script, a.out executable, etc.) and passes it to an image activator
within the kernel (see figure 3 on the next page). Image activators parse vari-
ous types of executable files and start running them; ELF image activators (32-
and 64-bit) encode knowledge of run-time linkers and how to find them in the

2On Linux, fexecve(3) is a glibc function that uses a file descriptor to look up a symbolic
link in /proc/self/fd, then calls exec(2) with that path name. The Linux implementation of
Capsicum required the addition of an execveat(2) system call with true file descriptor seman-
tics [Dry14].

6

Application

Kernel

kern_execve

exec_new_vmspace

imgact_elf.c

exec___elfN_imgact

__elfN_open_path

fexecve(2)

sys_fexecve

execve(2)

sys_execve

do_execve

struct execsw {

 const char *ex_name;
};

int (*ex_imgact)(...);

aout
binmisc

gzip

shell

(similar functions)

Figure 3: The FreeBSD kernel contains a number of image activators to parse
various types of executable files and start running them.

7

ELF header

e_ident[EI_NIDENT] e_type
e_machine ...
e_phoff e_shoff
...

Section header table
.interp, .dynsyn, .plt, .text, ...

Program header table
.p_type=PT_LOAD .p_type=PT_DYNAMIC
.p_type=PT_INTERP .p_type=...

.interp

/libexec/rtld.so.1

Figure 4: The ELF file format includes an explicit path to the run-time linker
that is expected to be used as an interpreter for the binary file.

filesystem. Although various ABIs for various platforms have default run-time
linker names, binaries can also explicitly encode a path to a preferred run-time
linker, as shown in figure 4. Whether discovered via a program’s internal for-
mat header or the default of an image activator, run-time linkers are described
using path names. In a conventional exec(2) or fexecve(2) invocation, the run-
time linker would be looked up using this path and executed first, before the
main function of the new application (illustrated in figure 2 on page 5). Inside
a Capsicum compartment, however, access to global filesystem namespaces is
not permitted, so another approach is required.

FreeBSD’s run-time ELF linker has recently been modified to support direct
execution, i.e., on FreeBSD 12-CURRENT one can run /libexec/ld-elf.so.1 as
an executable — the usage string as of writing is shown in listing 5 on the fol-
lowing page. This ability has long been present in Linux’ ld-linux.so.2, but it
was not required on FreeBSD until motivated by the requirements of oblivious
sandboxing. Now, direct execution has been implemented together with the
ability for the run-time linker to accept as a command-line argument a file de-
scriptor to link and run — these changes will be present in FreeBSD 12.0 and
are anticipated to be included in 11.1 as well. Together, they allow a process
in capability mode that has capabilities for a run-time linker and a binary to

8

Usage: /libexec/ld-elf.so.1 [-h] [-f <FD >] [--] <binary > [<args >]

Options:
-h Display this help message
-f <FD> Execute <FD> instead of searching for <binary >
-- End of RTLD options
<binary > Name of process to execute
<args > Arguments to the executed process

Figure 5: Current usage options for FreeBSD’s ELF run-time linker

fexecve(2) that linker, preserving open files including the binary’s capability,
and to specify via command-line arguments which file the linker is to execute.

The net result, shown in figure 6 on page 11, is that the specified binary
is executed using the specified run-time linker. However, without access to
shared libraries stored in the filesystem, the run-time linker is not able to satisfy
the dynamic code-loading requirements of the application. That requires an
additional mechanism: library path descriptors.

4.2 Shared libraries in capability mode

As described above, essentially all modern executable files are dynamically
linked and therefore depend on access to shared libraries for their correct ex-
ecution3. When applications compartmentalize themselves with cap_enter(2),
they can do so after the dynamic run-time linker has discovered library depen-
dencies and mmap(2)’ed them in place for later linking. If an application starts
running before these libraries have been opened, however, the linker is unable
to satisfy the requirements of dynamic symbol resolution.

Traditionally, the dynamic run-time linker has supported a number of en-
vironment variables that control its behaviour. One example, LD_LIBRARY_PATH,
informs the linker of a set of directories in which additional libraries may be
found. For example, a program may set LD_LIBRARY_PATH to an internal di-
rectory that contains application code or dynamically-loadable plugins. We
have extended FreeBSD’s ELF run-time linker to support an additional envi-
ronment variable, LD_LIBRARY_PATH_FDS. This variable allows the specification
of directories containing shared libraries that will be searched in exactly the
same was as LD_LIBRARY_PATH_FDS, but with one crucial difference: instead of
a colon-separated list of pathnames, this variable contains a colon-separated
list of directory descriptors. Since environment variables and open files are
both preserved across the fexecve(2) boundary — unlike, e.g., memory map-
pings — this allows a parent process to open a set of library descriptors and
set LD_LIBRARY_PATH_FDS and then enter capability mode and fexecve(2) the run-
time linker itself with access to its shared library directories. Combined with

3In fact, the FreeBSD-derived MacOS does not support statically-linked binaries: ABI guaran-
tees are maintained only at the interfaces of core system libraries rather than the kernel [App11].

9

the direct-execution support described in 4.1, this allows a dynamically-linked
application to be executed from within a sandbox.

4.3 libpreopen: transparent filesystem proxying

It is useful to be able to execute code from within a sandbox, including code
that is dynamically-linked, but that is insufficient for the goal of oblivious
sandboxing. Most Unix applications are written using common system calls
such as access(2), stat(2) and open(2) to test and gain access to files within the
filesystem. These system calls inherently require access to the global filesystem
namespace, so they are not permitted in capability mode. It is possible to write
applications to use fstatat(2), openat(2), etc., relative to an explicit base direc-
tory, but many extant applications have not been written this way. To achieve
oblivious sandboxing, applications must be confined and resources must be
provided without application modification.

We can interpose a run-time translation of system calls from capability-
unsafe to capability-safe variants using the run-time linker: the LD_PRELOAD en-
vironment variable allow us to name libraries that should be loaded before
any others. When libraries are named in this environment variable without
absolute paths, the run-time linker searches through its default search paths
for libraries of the given names, but not before consulting LD_LIBRARY_PATH_FDS,
making LD_PRELOAD a capability-mode–compatible directive. If we provide an
implementation of a libc function such as open(2), our implementation will
take precedence over that of libc, where system calls are defined as “weak”
symbols. Our implementation of open(2) can translate the provided path argu-
ment into an openat(2) call, but by itself, this adaptation accomplishes nothing:
the application will still attempt to look up a path name that is not relative to a
directory, only this time it will do so using the openat(2) system call instead of
open(2).

The final component that is required to adapt filesystem namespace oper-
ations is a set of pre-opened directory descriptors that other operations can be
performed relative to. This is the core abstraction provided by libpreopen, a
library that is — for the moment — maintained independently of FreeBSD4.
libpreopen provides a struct po_map type that is used to map directory names
to directory descriptors, flags and capability rights, as well as libc wrappers
that can look up and query a default po_map. For example, when libpreopen’s
implementation of open(2) is passed an absolute path, it looks up the default
po_map, which can be specified as data packed into an anonymous shared mem-
ory segment. FreeBSD’s implementation of POSIX shared memory allows a
constant “path” of SHM_ANON to be passed to shm_open(2), creating a shared mem-
ory segment that can be manipulated by file descriptor but does not appear
in the regular POSIX shared memory namespace, making it safe for use in ca-
pability mode. libpreopen can open such a shared memory segment, specified
by file descriptor in an environment variable, and unpack its data into an in-

4libpreopen can be downloaded and built from https://github.com/musec/libpreopen

10

capsh

capsh

fork(2)

sandbox

cap_enter(2)

fexecve(2)

rtld
library dirs

open[at](2)

rtld
binary

[/usr[/local]]/lib

libc
libxx

libyy

working dir

… … …

application

main()

libpreopen

open(2)

Figure 6: By directly executing the run-time linker with a new file-descriptor
argument and the LD_LIBRARY_PATH_FDS environment variable, capsh can exe-
cute an untrusted program from within a Capsicum sandbox. This application
starts running without the ambient authority to access global namespaces.

memory struct po_map object. From that po_map, the wrapper queries, “do you
have a directory descriptor whose name is a prefix of this absolute path?” If
such a descriptor exists in the map, the absolute path is decomposed into a di-
rectory descriptor and a relative path from that descriptor. These two elements
can then be passed to openat(2).

libpreopen provides a mechanism for a process in capability mode to ac-
cess filesystem resources, so long as some directory descriptors have been pre-
opened and stored in a way that is accessible to the library. Opening such de-
scriptors, building a struct po_map representation, packing it into anonymous
shared memory and storing the file descriptor of the shared memory segment
in an environment variable are all the responsibility of the process spawning
the sandboxed child. One example of such a process is capsh, the capability
shell.

4.4 capsh: a capability-enhanced shell

The final major component of Capsicum-based oblivious sandboxing is a pro-
gram to transparently sandbox unmodified — and unsuspecting — applica-
tions. A proof-of-concept implementation of such a program is capsh, a shell
that uses capabilities and capability mode to sandbox applications. Hosted in-

11

dependently of FreeBSD for the time being5, capsh allows users to execute sim-
ple unmodified applications from within a Capsicum sandbox. In its current
implementation, the program is hardly a shell at all: it has no interactive mode,
only executing a single program per invocation. It also only supports simple
applications with statically-enumerable resource requirements. Nonetheless,
programs that fit into this model can be executed with sandboxing from incep-
tion without program modification.

capsh works by tying together the pieces of the oblivious sandboxing puz-
zle described above. It finds and opens a user-specified executable file, to-
gether with a run-time linker to interpret it. It opens library directories and
stores them in the LD_LIBRARY_PATH_FDS environment variable. It manipulates
pre-opened directory descriptors, storing them in struct po_map types provided
by libpreopen and making them available to child processes via shared memory
and environment variables. It then enters capability mode via cap_enter(2) and
uses fexecve(2) to execute the run-time linker. The net result is that an unmod-
ified application starts running from within a Capsicum sandbox, as shown in
figure 6 on the preceding page.

4.5 Oblivious sandboxing

Applications running under capsh can access only those resources that are ex-
plicitly delegated to them; there can be many sources of policy as to which
resources ought to be delegated. Users running capsh implicitly specify pol-
icy when they type command-line arguments to sandboxed applications: the
presence of a file name as an argument may be an indication that the file should
be pre-opened before the applications is executed or that permission to open
the file via a proxied mechanism such as libcasper should be granted. Users
may also drive policy decisions implicitly through interactions with a graph-
ical user interface, as in the powerbox model described in , and future work
on capsh may connect to existing models of graphical login sessions to provide
this mode of policy elicitation. Policy may also be derived from files pack-
aged together with applications: a compiler’s package metadata may specify
where its standard library is located, and capsh could pre-open that directory
with a read-only capability. More sophisticated policy files could describe lim-
ited interactions that are permitted with named libcasper services, leading to
a more general model of a Capsicum application as shown in figure 7 on the
next page. Additional exploration of mechanism is also possible: of particular
interest to the authors of this article is the possibility of applying LLVM-based
transformation to libraries and applications that embed LLVM bitcode, allow-
ing a transparent re-writing of function calls to capability-mode–friendly APIs
without needing LD_PRELOAD for interposition.

5The capsh source code is available at https://github.com/musec/capsh

12

Sandboxed application

rtld

library dirs

libpreopen

working dir

… … … …

working dirs

libcasper

socket

Application logic

open(2) DNS,…dlopen(3)

[/usr[/local]]/lib

libc
libxx

libyy

Application
proxy service

Login session
proxy service

System
proxy service

Figure 7: A fully-sandboxed application can only access files and services that
have been delegated to it: the run-time linker can find libraries in pre-opened
directories using LD_LIBRARY_PATH_FDS, libpreopen can operate on files in pre-
opened working directories — translating global-namespace–dependent sys-
tem calls such as open(2) to relative variants such as openat(2) — and libcasper

can proxy access to namespaces of external servers.

13

5 Conclusion

Capsicum, a principled and coherent design for software compartmentaliza-
tion, has taken strides in recent days towards a new security model. Changes
in the FreeBSD ELF run-time linker, together with developments in libpreopen

and capsh, allow simple applications to be sandboxed transparently, without
any participation on the part of the application. These foundational elements
have now set the stage for a deeper exploration of how programming mod-
els interact with the need for compartmentalization and to what extent soft-
ware can be sandboxed obliviously, operating as normal with no requirement
to know whether it is operating inside of a sandbox or not. A broader avail-
ability of oblivious sandboxing will allow us to move to a FreeBSD in which
applications “just work” and are secure by default.

References

[App11] Apple Inc. Technical Q&A QA1118 Statically linked binaries on Mac
OS X. 2011. URL: https://developer.apple.com/library/content/
qa/qa1118/%7B%5C %7Dindex.html (visited on 05/17/2017).

[App16] Apple Inc. App Sandbox in Depth. 2016. URL: https://developer.
apple.com/library/content/documentation/Security/Conceptual/
AppSandboxDesignGuide/AppSandboxInDepth/AppSandboxInDepth.
html.

[Bie06] Eric W Biederman. “Multiple Instances of the Global Linux Names-
paces”. In: Linux Symposium Volume One. 2006, pp. 101–111. DOI:
10.1.1.108.5475. URL: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.108.5475%7B%5C&%7Drep=rep1%7B%5C&
%7Dtype=pdf%7B%5C#%7Dpage=127.

[BM06] Bauer and Mick. “Paranoid Penguin: An Introduction to Novell Ap-
pArmor”. In: Linux Journal 2006.148 (2006), p. 13. ISSN: 1075-3583.
URL: http://dl.acm.org/citation.cfm?id=1149839.

[Chi15] Richard Chirgwin. Untamed pledge () aims to improve OpenBSD secu-
rity Monkey with the wrong permissions , your program dies. 2015. URL:
https://www.theregister.co.uk/2015/11/10/untamed%7B%5C %
7Dpledge%7B%5C %7Dhopes%7B%5C %7Dto%7B%5C %7Dimprove%7B%5C %
7Dopenbsd%7B%5C %7Dsecurity/ (visited on 05/17/2017).

[Cor12] Jonathan Corbet. Yet another new approach to seccomp. 2012. URL: http:
//lwn.net/Articles/475043/.

[Dry14] David Drysdale. Add execveat() system call. 2014. URL: https://lwn.
net/Articles/601378/.

14

[DV66] Jack B Dennis and Earl C Van Horn. “Programming semantics for
multiprogrammed computations”. In: Communications of the ACM
9.3 (1966), pp. 143–155. DOI: 10.1145/365230.365252. URL: http:
//dl.acm.org/citation.cfm?id=365230.365252.

[FN79] R J Feiertag and Peter G Neumann. “The foundations of a prov-
ably secure operating system (PSOS)”. In: NCC ’79: Proceedings of
the 1979 AFIPS National Computer Conference. 1979. URL: http://
doi.ieeecomputersociety.org/10.1109/AFIPS.1979.116.

[Lin76] Theodore Linden. “Operating System Structures to Support Secu-
rity and Reliable Software”. In: ACM Computing Surveys (CSUR)
8.4 (1976), pp. 409–445. DOI: 10.1145/356678.356682. URL: http:
//dl.acm.org/citation.cfm?id=356682.

[LS01] Peter A Loscocco and Stephen D Smalley. “Meeting Critical Secu-
rity Objectives with Security-Enhanced Linux”. In: Proceedings of the
2001 Ottawa Linux Symposium. 2001.

[Pro03] Niels Provos. “Improving Host Security with System Call Policies”.
In: Proceedings of the 12th USENIX Security Symposium. Washington,
DC, US, Aug. 2003.

[RT78] O.M. Ritchie and K. Thompson. “The UNIX time-sharing system”.
In: Bell System Technical Journal, The 57.6 (July 1978), pp. 1905–1929.
ISSN: 0005-8580. DOI: 10.1002/j.1538-7305.1978.tb02136.x. URL:
http://ieeexplore.ieee.org/ielx7/6731005/6770388/06770404.
pdf ? tp = %7B % 5C & %7Darnumber = 6770404 % 7B % 5C & %7Disnumber =
6770388.

[SCS77] Michael D Schroeder, David D Clark, and Jerome H Saltzer. “The
Multics kernel design project”. In: SOSP ’77: Proceedings of the Sixth
ACM Symposium on Operating Systems Principles. ACM, 1977. URL:
http://portal.acm.org/citation.cfm?id=800214.806546%7B%5C&
%7Dcoll=DL%7B%5C&%7Ddl=ACM%7B%5C&%7DCFID=71142285%7B%5C&
%7DCFTOKEN=28878193.

[Wat+10] Robert N M Watson et al. “Capsicum: practical capabilities for UNIX”.
In: Proceedings of the 19th USENIX Security Symposium. USENIX As-
sociation, 2010. URL: https://www.usenix.org/legacy/events/
sec10/tech/full%7B%5C %7Dpapers/Watson.pdf.

[Yee04] Ka-Ping Yee. “Aligning security and usability”. In: IEEE Security
and Privacy Magazine 2.5 (2004), pp. 48–55. ISSN: 1540-7993. DOI: 10.
1109/MSP.2004.64. URL: http://ieeexplore.ieee.org/xpls/abs%
7B%5C %7Dall.jsp?arnumber=1341409.

[Zab16] Mariusz Zaborski. “libcasper(3)”. In: FreeBSD Library Functions Man-
ual. 2016. URL: https://www.freebsd.org/cgi/man.cgi?query=
libcasper.

15

