
The History and Future of OpenZFS

Allan Jude, Klara Inc.

Abstract

The ZFS project started at Sun Microsystems in the summer

of 2001. It has since grown to be one of the most robust, relied

upon filesystems in use today. Over the course of its nearly

20-year history, it has continued to expand with additional

features and to support additional platforms. Despite its age,

ZFS remains on the leading edge of reliability and flexibility

while maintaining performance. After a brief review of the

history of ZFS, this paper will explore the future of today’s

OpenZFS project and FreeBSD’s role in it.

1. History

The ZFS project started after several failed attempts to create

a new filesystem at Sun. These previous attempts seemed to

be brought down by too large a team in the beginning and too

much or too little direction. ZFS started from scratch with

Sun veteran Jeff Bonwick and a newly minted undergraduate

of Brown University, Matt Ahrens, who today has become

one of ZFS’s most well-known luminaries. The guiding

philosophy of ZFS is simple: adding additional storage

should be as easy as adding additional RAM is. Just connect

the additional hardware to the system, and you can use it.

There is no “ramctl” command where you need to configure

the additional sticks of RAM before they can be used. By

combining the previously separated roles of volume manager

and filesystem, ZFS simplifies administration and improves

flexibility.

1.1. Initial Development

Traditional filesystems typically work on a single disk. Thus,

when a filesystem larger or more redundant than a single disk

is desired, a volume manager combines multiple physical

disks into a single logical volume on which a filesystem can

be placed. This has several disadvantages. Such a filesystem

does not understand the layout of the blocks on the physical

disks, thus, it cannot optimize the layout for better

redundancy or performance. Most filesystems are still

designed to use a contiguous range of block addresses on a

storage device, so it is not possible to reclaim unused space

and make it available to another filesystem. ZFS works

around this issue by creating a single large pool of space,

typically made up of many disks, from which thinly

provisioned filesystems are created. As each filesystem

allocates new blocks, it takes space from the pool; when those

blocks are freed, they are returned to the pool. This simple

1
 https://www.delphix.com/blog/delphix-engineering/zfs-

10-year-anniversary

concept allows many filesystems to share available blocks.

The copy-on-write (CoW) nature of ZFS also allows the same

blocks to be shared by multiple filesystems, in particular

through the mechanism of ZFS snapshots and clones.

ZFS also incorporates the powerful ability to serialize a

filesystem into a replication stream. This allows a filesystem

to be stored on a different filesystem, other media (tape), or

sent over the network where it may be stored as generic data,

or reconstructed into a remote ZFS filesystem on another

machine. The internal format of ZFS, where each block has a

birth time, also means it is computationally inexpensive and

does not require excessive amounts of IO to determine which

blocks have changed between two snapshots. The resulting

ZFS incremental replication thus has far lower overhead than

similar methods, such as rsync.

In a blog post, Matt Ahrens said1: “ZFS send and receive

wasn’t considered until late in the development cycle. The

idea came to me in 2005. ZFS was nearing integration, and

I was spending a few months working in Sun’s new office in

Beijing, China. The network link between Beijing and Menlo

Park was low-bandwidth and high-latency, and our NFS-

based source code manager was painful to use. I needed a

way to quickly ship incremental changes to a workspace

across the Pacific. A POSIX-based utility (like rsync) would

at best have to traverse all the files and directories to find the

few that were modified since a specific date, and at worst it

would compare the files on each side, incurring many high-

latency round trips. I realized that the block pointers in ZFS

already have all the information we need: the birth time

allows us to quickly and precisely find the blocks that are

changed since a given snapshot. It was easiest to implement

ZFS send at the DMU layer, just below the ZPL. This allows

the semantically-important changes to be transferred exactly,

without any special code to handle features like NFSv4 style

ACLs, case-insensitivity, and extended attributes. Storage-

specific settings, like compression and RAID type, can be

different on the sending and receiving sides. What began as

a workaround for a crappy network link has become one of

the pillars of ZFS, and the foundation of several remote

replication products.”

1.2. OpenSolaris

In 2005, Sun released ZFS as open source software under the

CDDL as part of OpenSolaris. This made ZFS available to

everyone and stimulated great interest in ZFS among a

number of other open source projects. Open source updates

to ZFS continued to be released until 2010 when Oracle

bought Sun and discontinued the open source development of

ZFS. This meant any new features developed by Oracle

would be proprietary.

1.3. FreeBSD

A port of ZFS to FreeBSD was started by Pawel Dawidek

sometime in 2006 with elements first committed to

FreeBSD’s head branch in April of 20072. Full ZFS support

(including booting from ZFS) was included in the next major

release, FreeBSD 7.0, in February 20083. Over time,

additional updates were continuously pulled in from

OpenSolaris, upgrading support from zpool version 6, to 13,

14, 15, and finally 28. After ZFS development was no longer

open source, FreeBSD switched upstreams to illumos (see

1.5), an open source fork of the last version of OpenSolaris

available under the CDDL.

1.4. Linux

Due to the perceived incompatibility between the CDDL and

GPL, the first attempt to port ZFS to Linux used the FUSE

system to run the code in userspace. While this approach was

generally functional, userspace implementations of

filesystems suffer from well-known performance and

stability issues.

A native port of ZFS to Linux was started by developers at

Lawrence Livermore National Laboratory in 2008. This port

was specifically to act as a backend for the Lustre distributed

filesystem. Because of this focus, the early versions of this

port only supported ZVOLs for Lustre and did not implement

the POSIX filesystem layer, which was added in 2011. With

its arrival on Github, the project attracted a community of

early adopters and by 2012 had its first pools in production.

Now known as ZFS-on-Linux (ZoL), the project delivered its

first general availability release in 2013 with version 0.6.1.

Today, the latest stable branch (0.8.x), which came out in

mid-2019, serves as the de facto ZFS reference

implementation for countless Linux operating systems.

1.5. Oracle Solaris and Illumos

Oracle continues to release new versions of Solaris, including

Oracle Solaris 11.4 SRU 12 in August of 2019 which offered

zpool version 46, under a now proprietary umbrella. Worse,

a previous release (version 29) fundamentally broke

compatibility with previous ZFS on-disk and replication

stream formats. This prevents replication from newer

versions of Oracle ZFS to OpenZFS pools, despite OpenZFS

maintaining full backwards compatibility.

When Oracle announced the cessation of development for

OpenSolaris, the last open source release was forked to create

the illumos project, which serves as the base for a number of

Solaris-like open source operating systems today. FreeBSD

and ZFS-on-Linux switched to the illumos repository as an

upstream at approximately this time.4

2
 https://lists.freebsd.org/pipermail/freebsd-current/2007-

April/070544.html

1.6. OS X

There were a number of ports of ZFS to Mac OS X, including

an internal one at Apple that was never released, an open

source MacZFS that supported zpool version 8, and ZEVO

that was freeware that supporting up to version 28.

After the end of the MacZFS project, work was restarted as

OpenZFS on OS X (known as O3X), based on the latest

version of ZFS-on-Linux.

When asked about the history, lead developer Jörgen

Lundman said: “I started on OSX back in Feb 2013, because

the ZEVO version didn't have lz4 compression or the support

for zvols that I wanted, so figured I'd help with that. But,

ZEVO is closed-source. I did look at macZFS initially, but

that port has all the changes in one big file, and I liked the

separation of the SPL (Solaris Porting Layer) more, so to

learn I figured I would pick up more understanding by doing

it again. I started with the ZFS-on-Linux repo for its

separation of SPL, ZFS and OS, as well as the autoconf work

(with illumos and FreeBSD, you build the whole kernel, so I

would have to figure out the cut myself). It Took quite a while

to reach that first "import", around May or so, but it feels

longer, since it was working with three unknowns.”

By 2015 O3X was considered stable and supported all

features that were supported on Linux. Today, this

implementation is generally kept up-to-date, and is the

standard ZFS implementation for Mac OS X.

1.7. Windows

In early 2017, Jörgen Lundman branched out from OS X and

started a native port for Windows.

“As the number of supported platforms grew, we always

joked about ‘doing the Windows’ port next, as I'm sure

everyone did. But over time, after a few years, it seemed less

and less insane. To me, since ext3, ufs, and others have

Windows ports, which use the same vnops calls as zfs, I think

everyone knew it ‘could’ be done, it was more a question of

effort and ability. Amusingly, I started looking into it in

earnest, also in Feb (2017). As in, downloading a Windows

VM and tried to compile/deploy a "hello world" kernel

module. That alone took 3 weeks, and I was close to quitting

then. After some persistence, the first "import -N" was in

April 2017, so a little faster than with OS X, as there was only

one "unknown" this time around. I was chatting with the guys

in the OS X IRC channel about the work and progress, but in

general, I kept it a secret for the presentation at the 2017

OpenZFS Developers Summit. Matt Ahrens found out when I

sent in my talk proposal, but otherwise I think we managed to

keep it a surprise.”

The Windows port, which is a native implementation and

does not reply upon WSL (Windows Subsystem for Linux),

now supports most ZFS features. That being said, the

3
 https://www.freebsd.org/releases/7.0R/announce.html

4
 https://www.youtube.com/watch?v=qrC63B_bGRI

Windows implementation of ZFS remains mostly a curiosity

at this time.

1.8. Others

ZFS has been ported to other platforms, though most of these

are relatively unknown or incomplete.

2. OpenZFS

In the wake of the end of OpenSolaris, partly driven by the

desire to see ZFS development continue without diverging on

different operating systems, Matt Ahrens announced the start

of the OpenZFS project in September 20135. The OpenZFS

community's goals are:

● To raise awareness of the quality, utility, and availability

of OpenZFS by consolidating documentation for

developers and sysadmins alike, and by engaging with

the larger tech community through conferences,

meetups, and online interactions.

● To encourage open communication about ongoing

efforts to improve OpenZFS, by creating a collaborative

website and mailing list to discuss OpenZFS code

changes.

● To ensure consistent reliability, functionality, and

performance of all distributions of OpenZFS by making

it easier to share code between platforms, by creating

cross-platform tests, and by encouraging cross-platform

code reviews.

OpenZFS’s fundamental strategy allows focus to be on

unified concepts and codebases across relevant platforms,

allowing user experience--and developer expertise--free

passage among them. If you know how to use ZFS on

FreeBSD, those skills should translate to OS X, Linux, or

even Windows.

To avoid confusion between version numbers of proprietary

ZFS and OpenZFS, and to better support the fact that

OpenZFS development was now happening on a number of

separate operating systems and distributions, the zpool

version was arbitrarily set to 5000 and the concept of feature

flags was introduced to track which newly-introduced ZFS

features were required on a particular pool. This allows

features to be developed and added to platforms as they

become ready, rather than in a particular sequence. Some

features are read-only compatible, meaning that you can

import the pool, but not write to it, if your system does not

support the new feature. Many features are only activated

when used. For example when support for the SHA512 and

Skein hashing algorithms was added, a pool did not become

incompatible until you started using one of the new hashes on

a dataset. New features, once activated in a pool (thus

affecting compatibility with earlier versions of ZFS), are

often reversible, in that when any new datasets using these

5
 http://open-zfs.org/wiki/Announcement

features are destroyed, the general compatibility of the ZFS

pool is restored.

One of the original goals of the OpenZFS project was to move

the common (OS agnostic) code to a unified repository, so

that it could be compiled and tested in userspace. This would

require each distribution to maintain their own “glue” to

integrate the common ZFS code into their OS. The main issue

with this approach was funding the additional work of

keeping the common code up to date, and integrating and

testing patches from the various distributions. There was little

commercial value in maintaining the common code by itself,

so the idea never gained traction.

With a lack of volunteers to maintain the “one true repo”, the

OpenZFS repo was created as a fork of the illumos repo on

GitHub. This allowed developers from the other platforms to

open Pull Requests to integrate patches without needing to

follow the more involved illumos RTI (Request to Integrate)

process. It also provided a central place to discuss and review

changes, and to post issues.

2.1. OpenZFS Developers Summit

In November 2013, the first annual OpenZFS developers

summit was hosted in San Francisco with 30 developers in

attendance. By 2016, the summit had grown to over 100

developers and added a second day hackathon where new

features and enhancements are prototyped. Having so many

ZFS developers in one place leads to many productive

conversations and brainstorming that would be impossible

remotely. These conferences provide significant value by

keeping the developer community up to date with changes

that are happening across platforms, and allowing hyper-

focused and in-person collaboration.

2.2. OpenZFS Users Conference

Datto, one of the companies that makes heavy use of ZFS-on-

Linux and developed its native encryption feature, hosted the

ZFS Users Conference in 2017 and 2018, although

attendance was less than 30 people, possibly due to the venue

being hard to reach (Norwalk, CT, USA). Low registration

resulted in the cancellation of the 2019 conference. Despite

these setbacks, the usefulness of a user conference is obvious:

ZFS is often one of the most well attended birds-of-a-feather

(BoF) sessions at conferences such as BSDCan, vBSDCon,

and MeetBSD. There have also been ZFS BoFs at USENIX

Lisa, Linux Fest North West, and many other conferences. A

key to success may be attaching to an existing event that

already draws a large number of ZFS users. The FreeBSD

project has had success by attaching to conferences like

USENIX FAST, FOSDEM, and Linux.conf.au as a

“miniconf” either preceding or as a breakout session of the

main conference.

2.3. OpenZFS Leadership Meeting

There are important advantages in collecting a large number

of OpenZFS developers at a yearly meeting. At the 2018

summit, it was decided that having a 30 minute monthly call

to follow up on the progress of decisions made at the annual

conference and to further coordinate development and feature

parity across all of the platforms would be extremely useful.

After the first few meetings, it was decided to expand to a full

hour. The meetings are open to the public, streamed live, and

the recordings are posted6 to YouTube for all to see. Topics

include the latest developments and bug reports, questions

and assistance with porting features to different platforms,

but also promotes earlier design review and considerations,

establishing policies (deprecation of ZFS features,

deprecation of supported platforms), and ensuring better

compatibility across platforms.

The leadership meetings have resulted in more discussions

about improving the naming conventions for tunables, and

projects such as implementing a system to be used during

zpool creation to allow the user to specify a pool compatible

with all OpenZFS implementations as of a specific date.

There has also been an effort to make the NFS properties

either translate to each platform’s native implementation, or

to split the property per platform, so there are, for example,

no errors when importing a pool with Linux NFS settings on

FreeBSD.

It wasn’t until 18 years into the existence of ZFS that the

question of a deprecation policy was addressed. How much

notice needs to be given to remove a feature? How do we

make sure the removal aligns with long-term support releases

of different platforms?

The first feature being considered for deprecation is the ZFS

send deduplication feature. This feature often causes

confusion among users who assume it is somehow related to

the regular pool-wide online deduplication feature. It applies

deduplication to the ZFS replication stream to avoid sending

duplicate blocks over the network. The dedup table is only

created in memory on the sending system, and is not

transmitted to the receiving system. Any block that appears

more than once in the stream is sent as a back-reference to its

first occurrence. On the receiving system, blocks are written

normally. Deduplication is only applied if it is enabled on the

receiving side, where it works the same whether the

replication stream used the dedup feature or not.

However, OpenZFS strives to maintain full backward

compatibility of the replication stream format, so that older

streams can always be received in the future, and so that the

replication feature can still be used to send data to an older

pool. Accordingly, it was decided that a standalone tool

should be created to “rehydrate” deduplicated streams. That

is, read in a deduplicated stream, and write out a version of

the stream without the deduplication feature, replacing each

back-reference with the full object. This would allow old

6
 https://www.youtube.com/playlist?list=PLaUVvul17xSeH

oMLiE_cp68mPvowtYteN

send streams to still be received even after support for the

deduplication feature has been removed from OpenZFS.

The second feature slated to be removed is dedupditto. The

idea behind this feature is that if a single block has been

deduplicated many times, there is a risk of leverage. ZFS

should store an additional copy of it to avoid the chance that

the only copy will be corrupted, impacting numerous

references to that block. However, it was discovered in 2019

that, for a number of years, these additional copies of the

block (ditto blocks) were neither being checked nor repaired

as part of scrub or resilver. If they were corrupted, that would

still be detected by the checksum, but this oversight

drastically reduces the efficacy of this feature.

Lastly, the question of platform deprecation has recently been

raised by the ZFS-on-Linux project. As of January 2020,

support for Redhat Enterprise Linux / CentOS 6 has been

removed from the master branch. Support is retained in the

0.8.x branch, but older Linux kernels will not be supported in

the next release.

3. The Rise of Linux

Over the course of 2016 and 2017, it became clear that the

proportion of development of ZFS was rapidly growing on

ZFS-on-Linux (ZoL). At the same time, illumos was starting

to suffer from a lack of development in areas that had less

direct commercial backing. In particular, areas such as

drivers and infrastructure were suffering in the illumos

ecosystem.

In early 2018, Delphix, a database virtualization appliance

vendor (and one of the largest contributors to OpenZFS)

announced that they would be changing their platform from

illumos to Linux. They had previously considered switching

to FreeBSD to get support for Microsoft Azure, but managed

to port platform support from FreeBSD to illumos to forestall

that requirement. This enabled Delphix, ultimately, to choose

Linux.

 “At the core of the Delphix virtualization product is an

application with tight ties to the OpenZFS filesystem. Ten

years ago, we chose the Illumos operating system as the

delivery vehicle for that combination, owing to the fact that it

was a great OS with strong ZFS support, and our employees

had deep familiarity with it. Illumos took us from VMware to

AWS and Azure, but each new platform comes with a set of

challenges — hypervisor and instance type support, extended

security reviews, expanded QA, and vendor support to name

a few. OpenZFS has grown over the last decade, and

delivering our application on Linux provides great OpenZFS

support while enabling higher velocity adoption of new

environments.”7

7
 https://www.delphix.com/blog/kickoff-future-eko-2018

By the fall of 2018 it was obvious that most new development

for ZFS was happening in the ZoL repo, rather than the

illumos repo. This presented a problem as FreeBSD was

using illumos as its upstream. Changes were taking longer

and longer to be ported from the ZoL repo and land in

illumos, before they could be imported into FreeBSD.

In an attempt to accelerate this process, developers from

iXsystems attempted to port the ZFS Native Encryption

feature from ZoL directly to FreeBSD. This proved very

difficult, as the two repositories had long since diverged.

This led to a new project, ZFS-on-FreeBSD (ZoF), aiming to

port the ZFS-on-Linux repo to FreeBSD. Keeping parts of the

existing OpenSolaris compatibility code for FreeBSD in

place of the Linux SPL (Solaris Porting Layer) shortened the

porting time. Further, after coordination with the leadership

of the ZoL project, it was decided to move any Linux-specific

implementation code into an os/linux directory, and allow the

FreeBSD-specific implementations to be added to the ZoL

repo under os/freebsd. This ongoing work will soon result in

a unified repository that can run on either Linux or FreeBSD.

Once this work is complete, the CI run against each proposed

patch will need to pass the ZFS test suite on both operating

systems before it will be merged. The O3X project plans to

adopt this same system and ultimately join this single

repository.

At the end of 2019 it was announced that the former

OpenZFS repository (the fork of illumos) will be archived,

and the current ZoL repo, which will soon contain the

compatibility code for FreeBSD, will be moved to the

OpenZFS organization on GitHub. The first release of

OpenZFS with consolidated support for both Linux and

FreeBSD will be called OpenZFS 2.0, with a goal to release

a new major version once per calendar year. This will make

it easier to compare and coordinate the feature sets of

OpenZFS across supported platforms8.

4. Recent Features

This section provides a list of features not yet in FreeBSD’s

in-kernel version of OpenZFS. Most (if not all) of these

features are expected to be imported in time for FreeBSD

version 13.0 as part of the ZFS-on-FreeBSD project.

3.1. ZoL 0.7

● Latency and Request Size Histograms - Use the

zpool iostat -l option to show on-the-fly latency

stats and zpool iostat -w to generate a histogram

showing the total latency of each IO. The zpool

iostat -r option can be used to show the size of each

IO. These statistics are available per-disk to aid in

finding misbehaving devices.

8
 https://openzfs.topicbox.com/groups/developer/T6aa3c033

248cef9c/zol-repo-move-to-openzfs

● Large Dnodes - This feature improves metadata

performance allowing extended attributes, ACLs, and

symbolic links with long target names to be stored in the

dnode. This benefits workloads such as SELinux,

distributed filesystems like Lustre and Ceph, and any

application which makes use of extended attributes.

● Multiple Import Protection - Prevents a shared pool in

a failover configuration from being imported on different

hosts at the same time. When the multihost pool property

is on, perform an activity check prior to importing the

pool to verify it is not in use.

● User/group object accounting and quota - This feature

adds per-object user/group accounting and quota limits

to existing space accounting and quota functionality. The

zfs userspace and zfs groupspace

subcommands have been extended to set quota limits and

report on object usage.

● Vectorized RAIDZ - Hardware optimized RAIDZ

which reduces CPU usage. Supported SIMD

instructions: sse2, ssse3, avx2, avx512f, and avx512bw,

neon, neonx2

● Vectorized Checksums - Hardware-optimized Fletcher-

4 checksums which reduce CPU usage. Supported SIMD

instructions: sse2, ssse3, avx2, avx512f, neon

3.2. ZoL 0.8

● Native Encryption - The encryption property enables

the creation of encrypted filesystems and volumes. The

aes-256-ccm algorithm is used by default. Per-dataset

keys are managed with zfs load-key and associated

subcommands.

● Raw Encrypted 'zfs send/receive' - The zfs send -

w option allows an encrypted dataset to be sent and

received to another ZFS pool without decryption. The

received dataset is protected by the original user key

from the sending side. This allows datasets to be

efficiently backed up (and even take advantage of

incremental replication) to an untrusted system without

requiring keys or decryption at rest or in motion.

● Pool TRIM - The zpool trim subcommand provides

a way to notify underlying devices which sectors are no

longer allocated. This allows an SSD to more efficiently

manage itself and helps to maintain performance.

Continuous background trimming can be enabled via the

new autotrim pool property.

● Project Accounting and Quotas - This features adds

project based usage accounting and quota enforcement

to the existing space accounting and quota functionality.

Project quotas add an additional dimension to traditional

user/group quotas. The zfs project and zfs

projectspace subcommands have been added to

manage projects, set quota limits, and report on usage.

● Allocation Classes - Allows a pool to include a small

number of high-performance SSD devices dedicated to

storing specific types of frequently accessed blocks (e.g.

metadata, DDT data, or small file blocks). A pool can

opt-in to this feature by incorporating a special or dedup

top-level device.

● Parallel Allocation - The allocation process has been

parallelized by creating multiple "allocators" per-

metaslab group. This results in improved allocation

performance on high-end systems.

● Deferred Resilvers - This feature allows new resilvers

to be postponed if an existing one is already in progress.

By waiting for the running resilver to complete,

redundancy is restored as quickly as possible.

● ZFS Intent Log (ZIL) - New log blocks are created and

issued while there are still outstanding blocks being

serviced by the storage, effectively reducing the overall

latency observed by the application.

5. OpenZFS 2.0

5.1. Why Jump to 2.0?

It was decided by OpenZFS leadership that a unified

repository supporting multiple operating systems constituted

a major milestone in ZFS development. It was also decided

that having regular annual major releases would make

discussions about OpenZFS easier, especially in the case of

long-term support distributions that might still be shipping

OpenZFS from 2019 in 2021. It also makes it easier to create

pools that are compatible across distros by targeting a

common OpenZFS version. In fact, this new OpenZFS

repository will go even further, as the platform-specific code

will also reside in the common repository, separated into

platform-specific directories. This improves the utility of the

common repo, as it allows full platform integration testing of

proposed patches, rather than just ZFS userspace tests. This

will ensure that proposed new features work on all platforms

supported by the common repo before being officially

integrated. Of course, this will require platform maintainers

to help review patches and implement missing platform-

specific functionality or face the prospect of their platform

losing the ability to block feature additions.

6. FreeBSD Features

There are also ZFS features that only exist in the FreeBSD

implementation. These should be upstreamed to OpenZFS

9
 https://www.bsdcan.org/2012/schedule/events/316.en.html

to make them more widely available and to reduce

FreeBSD’s maintenance burden.

● Throttle Scan I/O – When other IOs are in progress,

reduce the rate that scrub/resilver IOs are issued to

avoid impacting workload performance during a

scrub/resilver.

● Vdev Ashift Optimization – Deals with situations

where devices with different sectors sizes are mixed

together, such as when replacement disks only support

4k sectors.

● zfs rename -u – FreeBSD has the ability to rename a

dataset without unmounting it. This is extremely useful

when a dataset is in use and cannot be easily

unmounted.

● NFSv4 ACL support – ZFS uses NFSv4 ACLs, which

FreeBSD and illumos implementations support, but

Linux does not.

● ACLMODE – FreeBSD’s version of ZFS has an

additional pool property, aclmode, that controls how

ACLs are impacted by chmod(2).

As well, there are some FreeBSD specific interactions with

GEOM and the virtual memory subsystem (ARC

backpressure). As of the end of 2019, some additional work

still needs to be done to ensure nothing is lost in the switch

from the current in-kernel ZFS to OpenZFS 2.0.

7. Features Expected in 2020

7.1. Async CoW9

This feature is designed to avoid copy-on-write faults, which

occur primarily when overwriting ZFS data blocks in less-

than-recordsize chunks. Additionally, when faults are

necessary, they are resolved asynchronously, significantly

reducing their impact on throughput and latency.

Applications that fill ZFS data blocks in such chunks now

enjoy performance approaching what they would if they were

writing out in larger chunks.

7.2. Enable Compression by Default

LZ4 compression is extremely fast and performant. There is

little downside to having it enabled, even for entirely

incompressible data. Its speed means that it often reduces

latency over writing uncompressed data, since there is less

data to write. Making it the default will generally make

efficacious use of storage without degrading the user’s

experience.

7.3. Improved AES-GCM Performance

Improvements to the SIMD implementation of AES-GCM

have been made to perform encryption in larger blocks and

consequently avoid paying the overhead of save/restoring the

FPU as frequently.

7.4. ZSTD Compression

While LZ4 is extremely fast, it generally provides only

modest compression ratios. ZSTD is a newer compression

algorithm from the same author that aims to provide gzip (or

better) levels of compression while retaining LZ4-like speed.

ZSTD further offers an extensive variety of compression

levels, allowing it to range from faster than LZ4 to reaching

almost LZMA (XZ) compression ratios. Importantly, ZSTD

decompression maintains high performance (i.e., it is for all

intents and purposes transparent) independent of the

compression level.

7.5. Per Vdev Properties

The primary administrative policy interfaces for ZFS have

traditionally been pool and dataset properties. These allow an

administrator to control compression, checksumming, record

size, sharing, and more, at the granularity of datasets. This

new work increases the granularity of this interface to allow

controlling the properties of individual vdevs below the

datasets. With features like allocation control and mirror

read bias (prefer to read from a specific member of a mirror),

and read-only statistical properties, it becomes possible to

more finely control and monitor the performance of a pool.

7.5. Persistent L2ARC10

Currently, each time a system is rebooted the contents of the

L2ARC are discarded. The L2ARC works by storing headers

in the ARC that point to the L2ARC device. When the system

is rebooted, these headers are lost, and there is no way to

recreate them, despite the fact of L2ARC data itself

persisting. This new feature adds a lightweight metadata

structure to the L2ARC that can be read at boot, enabling the

recreation of ARC headers. This approach means that the

cache persists across a reboot and also allows the L2ARC

entries to be reloaded asynchronously after the pool is

imported, rather than blocking the import processing and

increasing booting time.

7.6. Redacted Send and Receive11

Redacted send/receive allows users to send subsets of data to

a target system. One possible use case for this feature is to

not transmit sensitive information to a data warehousing,

test/dev, or analytics environment. Another is to save space

by not replicating unimportant data within a given dataset.

Redaction is accomplished by cloning a snapshot, removing

or overwriting the data to be redacted, and then creating a

10

 https://github.com/zfsonlinux/zfs/pull/9582
11

 https://github.com/zfsonlinux/zfs/commit/30af21b02569a

c192f52ce6e6511015f8a8d5729
12

 https://github.com/zfsonlinux/zfs/commit/93e28d661e1d7

04a9cada86ef2bc4763a6ef3be7

second snapshot. That snapshot is then processed by the zfs

redact command to create the redaction bookmark, which

is finally passed as a parameter to zfs send. When sending

to the redacted snapshots, the redaction bookmark is used to

filter out blocks that contain sensitive or unwanted

information, and thus those blocks are not included in the

send stream.

7.7. Log Space Maps12

This new feature changes the way space is allocated and freed

in ZFS. Rather than updating every modified spacemap on

each vdev during each transaction, a single log spacemap is

created for each transaction group. A small number of

spacemaps are then updated with each transaction group. This

makes transactions take significantly less time to flush and

reduces the number of overhead IOPS for internal ZFS space

accounting.

7.8. Fast Clone Deletion13

Deleting a cloned filesystem or volume requires finding all

blocks that belong only to the clone and are not shared with

the origin snapshot. This is done by traversing the entire

block tree which can take a long time and can be very

inefficient for clones that have not deviated very much from

the origin. This feature adds an option during clone creation

to track the blocks with a livelist. All blocks that are modified

or created by the clone are kept on this list, allowing the clone

to be removed quickly by simply traversing and freeing the

blocks on the livelist.

7.9. Zpool Wait14

This new features introduces a command that does not return

until the indicated operation is complete. This allows an

administrator to trigger other actions only after a scrub,

resilver, device initialize, device removal, device

replacement, or background freeing, is complete. It also

supports waiting until a zpool checkpoint is discarded. Future

work will also allow waiting until manually triggered TRIM

operations have completed.

7.10. Reduced Metaslab Memory Usage15

This new feature replaces AVL trees used to implement the

range tree structure used to track allocated space with a btree

like structure. The new structure is up to two-thirds more

space-efficient, requiring less memory for each loaded

metaslab. The changes also result in less CPU utilization and

also improves metaslab loading logic.

13
 https://github.com/zfsonlinux/zfs/commit/37f03da8ba6e1

ab074b503e1dd63bfa7199d0537
14

 https://github.com/zfsonlinux/zfs/commit/e60e158eff920

825311c1e18b3631876eaaacb54
15

 https://github.com/zfsonlinux/zfs/commit/ca5777793ee10

b9f7bb57aef00a6c8d57969625e

8. Future Features

8.1. DRAID16

Declustered parity RAID (DRAID) is designed to reduce the

“risk window” when devices fail. In traditional RAID-Z, a

pool is often made up of separate RAID-Z vdevs, particularly

in large pools. If a disk fails in a given vdev, only the drives

comprising that vdev would be actively involved in

resilvering the data; the remaining drives in the vdev would

contribute reads, while writes would be bottlenecked to the

single replacement disk. With DRAID, all of the drives are

combined into a single vdev, but the layout is shuffled so that

data and parity are distributed. Additionally, spares for the

vdev are not separate physical devices; rather, one or more

spares are created by combining segments of space from each

physical disk. As a result, when a disk fails, parity is read

from every remaining physical disk, and the writes to the

designated virtual spare are efficiently distributed across

every remaining physical disk. In systems with large numbers

of disks, this reduces greatly the time the pool is vulnerable

to concurrent failures, safely allowing a lower overall parity

ratio. While the act of “resilvering” the actual faulted disk

may be expected to take longer, DRAID significantly reduces

the “risk window” where an entire pool would be at risk.

8.2. RAID-Z Expansion17

This much-anticipated feature will allow an existing RAID-

Z vdev to be widened by a single disk. This is accomplished

by “reflowing” the existing blocks, similar to widening a

column in a word processor. As all of the data on the pool is

rewritten to the new layout, the additional free space ends up

as a contiguous chunk at the end of the vdev, avoiding any

fragmentation.

8.3. Temporal Dedup

In a ZFS leadership meeting in 2019, Josh Paetzel of Panzura

committed to open sourcing their alternative implementation

of ZFS deduplication. This implementation groups together

blocks that deduplicated around the same time. Current

implementations of ZFS order blocks according to an

effectively random hashing function, failing to take

advantage of events which affect likely-related groups of

deduplicated blocks.

8.4. Adaptive Compression

With the implementation of ZSTD (see section 7.4), it will be

possible to extend ZFS to adaptively adjust compression

levels used on a dataset based on the amount of dirty data.

This technique better aligns compression with available

system resources on-the-fly for improved performance.

9. Conclusion

9.1. What FreeBSD Gains

16

 https://github.com/zfsonlinux/zfs/wiki/dRAID-HOWTO

For FreeBSD, the switch to the OpenZFS 2.0 upstream will

bring a lot of new features and bug fixes and, importantly,

restore FreeBSD’s position as a leader in ZFS development.

It is important that FreeBSD have timely access to new

features in ZFS; always having the latest features has been a

key driver of the adoption of ZFS on FreeBSD. In addition,

switching upstreams will result in more active development

and testing of ZFS on FreeBSD, to say nothing of increased

visibility of FreeBSD itself.

9.2. The Cost of Switching

The project to merge FreeBSD support into ZFS-on-Linux

has been ongoing for over a year, with a number of

developers putting significant time and effort into the project.

This effort is what has led directly to the advent of OpenZFS

2.0. During the initial import of OpenZFS 2.0 as a

replacement for illumos ZFS, there will be some disruption.

A number of integrations will need adjustments to properly

fit into the new model. The goal is that the upgrade to 13.0-

RELEASE (when it comes out) will be smooth, but those

using ZFS on -CURRENT builds may be exposed to a few

visible issues during the transition.

9.3. What FreeBSD is Committing To

In order for FreeBSD to remain an enduring platform for

OpenZFS, members of the FreeBSD community will need to

fully engage in this upstream project. This means providing

timely code reviews and assisting with the integration of new

features, particularly any platform-specific code. FreeBSD’s

continued status as a “must-be-working-on” platform

depends upon this vigorous engagement. Should the

FreeBSD community not uphold these expectations, new

features will no longer have to pass continuous integration on

FreeBSD to be merged into OpenZFS, which would have a

deleterious effect on FreeBSD and its future. FreeBSD must

be a partner that actively moves OpenZFS forward, not one

that holds it back.

17
 https://github.com/zfsonlinux/zfs/pull/8853

