
BSDCan 2015
UCL Working

Group
allanjude@freebsd.org

Overview

The goal of this working group is to
develop a template for all future
configuration files that is both human
readable and writable, but is also
hierarchical, expressive, and
programmatically editable.

Agenda
● Opening: What is UCL
● Presentation of work in progress: converting

newsyslog and bhyve to UCL
● Discuss common requirements for

configuration files
● Develop a common set of grammar/keys to

work across all configuration files ('enabled'
activates/deactivates each block, allows
disabling default configuration without
modifying the default files, ala pkg)

Agenda (Continued)

● Discuss layering (/etc/defaults/foo.conf ->
/etc/foo.conf -> /etc/foo.conf.d/*.conf ->
/usr/local/etc/foo.conf.d/*.conf)

● Discuss required features for management
utilities (uclcmd)

● Identify additional targets to UCL-ify
● Develop a universal API for using libucl in

various applications, simplify loading
configuration into C structs (libfigpar?)

What is the Universal
Configuration Language?

● Inspired by bind/nginx style configuration
● Fully compatible with JSON, but more liberal

in what it accepts, so users do not have to
write strict JSON

● Can Output UCL, JSON, or YAML
● Supports handy suffixes like k, mb, min, d
● Can be as simple or as complex as required
● Allows inline comments (# and /* multiline */)
● Validation and Schema support
● Supports includes, macros, and variables

Why UCL is great -- all of this is valid
param = value;
flag = true;
number = 10k
time = 0.2s
foo: bar
fiz = “buz”
freebsd = “best”;
freebsd = “greatest”;
array = [

thing1,
thing2,

]

key = “value”;
section {
 string = "something";
 subsection {
 jail {
 host = "somejail";
 port = 900;
 }
 jail {
 host = "otherjail";
 port = 901;
 }
 }
}

UCL Includes

The includes feature in libUCL is very rich:
● try: errors loading the file are non-fatal
● glob: treats the filename as a shell GLOB pattern and

load all files that matches the specified pattern
● url: allow URL includes (required libfetch or libcurl)
● sign: UCL loads and checks the signature for a file from

path named <FILEPATH>.sig. Trusted public keys
should be provided for UCL API after parser is created
but before any configurations are parsed.

● priority: specify priority for the included file
● Included keys with the same priority are merged, keys

with a higher priority overwrite the older values

Work In Progress

Add UCL support to newsyslog:

https://reviews.freebsd.org/D1548
Give bhyve a UCL config file:

https://reviews.freebsd.org/D2448
Example config files:

newsyslog: http://allanjude.com/bsd/newsyslog.ucl
bhyveucl: http://allanjude.com/bsd/vmconfig.ucl
bhyve.conf: http://allanjude.com/bsd/bhyve.conf

https://reviews.freebsd.org/D1548
https://reviews.freebsd.org/D1548
https://reviews.freebsd.org/D2448
https://reviews.freebsd.org/D2448
http://allanjude.com/bsd/newsyslog.ucl
http://allanjude.com/bsd/vmconfig.ucl
http://allanjude.com/bsd/bhyve.conf

What makes a good config file?

● Easy to read
● Easy to write
● Easy to parse
● Easy to edit programmatically
● Organized (break keys into sections of

related settings, rather than flat n:v pairs)
● Short(ish) but descriptive key names

Common Keys

We will discuss and develop a common set
of keys to be used in all configuration files
throughout the base system, and plan for
the implementation of UCL support in
various utilities.
● Enabled Flag - Allow default config entries

to be disabled
● Versioning - config files change over time,

some level of convertibility/backwards
compatibility can be achieved

Namespace

pkg(8) currently uses “enabled” as a
boolean to mark individual sections as on or
off. We’d like to do that for every section in
every utility, so what should we name it?
● enabled (possibly conflicts with utility)
● __enabled
● freebsd_enabled (utility used outside of freebsd)
● freebsd.enabled (caused issue with dot notation)
● freebsd { enabled = true }

Layering

libUCL has a rich “includes” framework.
Makes it easier to implement blah.d/ config
fragments because the work is done by libucl,
rather than having to teach each utility how to
include files and handle things.
libUCL also has the ‘priorities’ system, which
allows included files to optionally override
settings from previous config files
/etc/defaults/foo.conf -> /etc/foo.conf ->
/etc/foo.conf.d/*.conf -> /usr/local/etc/foo.conf.
d/*.conf

Why Layering is Useful

Currently, FreeBSD ships with a default
/etc/newsyslog.conf that rotates the default logs.
If you want to change the default number of
copies of /var/log/messages that are retained,
you have to modify this file.
When you next upgrade FreeBSD, maybe there
is a new log file to rotate, now your file needs to
be 3-way merged.
Includes have solved the problem of packages
needing to add their log files to the config file.

More Layering

So, what we need to do is move the defaults to
/etc/defaults/ and provide a way for users to
override or disable the default settings.

Management Tools

I have written uclcmd, a utility that allows you to
get, set, merge, and remove keys from UCL
files. It can output via libucl in UCL, JSON, or
YAML, or using its own code, output as shell
assignment statements, optionally with
additional variables to assist with recursion.
It currently does not operate on files in place,
but outputs to stdout.
What other features does it need?

uclcmd: shellvar output example
uclcmd get -f ../bhyveucl/bhyve.conf -ekl \|recurse

__keys="name cpus memory uuid console loader
loader_args loader_input device acpi
vmexit_on_hlt vmexit_on_pause disk network"

name="vm0001"
cpus=4
memory=4294967296
console="/dev/nmdm0001A"
loader="bhyveload"
loader_args=""
loader_input=""
acpi=true
vmexit_on_hlt=true
vmexit_on_pause=true

disk=[array]
disk__length=2
disk_0="/vm0001/disk0001"
disk_1={object}
disk_1__keys="type path
readonly"
disk_1_type="virtio-blk"
disk_1_path="
/vm0001/img0002"
disk_1_readonly=true

Targets to UCL-ify

● bhyve
● crontab
● iscsi / ctld
● autofs
● config(8)
● portsnap
● launchd
● devfs
● kernel conf
● dconf
● bsnmpd
● zfs properties

jail.conf
● need support for self-

referencing variables like
${host.hostname} in path

● Has keys with dots in them
(UCL lookup_path problem)

wpa_supplicant
● syntax is almost the same as

UCL
devd.conf
● syntax doesn’t match well, will

need work
login.conf (cap_mkdb)
pw.conf (pwd_mkdb)
mac.conf

Files not to ucl

rc.conf (maybe)
loader.conf
ssh / sshd
hosts
services
nsswitch.conf
pf.conf

autofs (both)
openpam

Universal API

The goal is to develop a universal API for
loading UCL configurations into the existing C
structs used internally by the target application,
to simplify implementing UCL in more places.

Devin Teske suggested his libfigpar may be a
good fit.

Comparing Methods

newsyslog:
● Reuse existing struct
● Not perfect, but usable
● Callback for each struct

member, does validation
● Uses a table to map key

names to callback
functions

● More plumbing, create
callback for each key

bhyve:
● bhyve originally used mix

of global and local
variables to store config

● Created new struct to be
used everywhere

● Some validation is done
during parsing, some at
the end of parsing, and
some when the value is
first used

● ugly strcmp if ladder

bhyve config infrastructure

● bhyve loads /etc/defaults/bhyve.conf
● which loads /etc/bhyve.conf and /etc/bhyve.

conf.d/*.conf
● Content in the two top level bhyve.conf

populate the root namespace, which bhyve
interprets are the “defaults”

● Content from bhyve.conf.d is automatically
nested as nameofconf { }, as it is designed to
be per-vm settings

● This is a break from the traditional .d model

Future Ideas

● “show running config” - A single compiled
config for the entire system, each service in
its own subkey
○ Possibly implement parsers for some config files that

are not converted to ucl (sshd_config) so they can
be included in the running config

● libuclnv - ucl -> nvlist, and nvlist -> ucl, by
borrowing the libucl parser and emitter, but
using nvlists for the internal representation

● Kyua regression tests for libUCL
● More simple tests for uclcmd

