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Abstract
The author describes existing procedures, tools, and ongoing 
development to improve the process of updating appliances, 
remote systems, and individual computers using ZFS. This 
paper  describes  a  mechanism for  replacing  the  operating 
system image with a newer image in a safe and atomic fash-
ion. This system allows for fail-safe unattended upgrades of 
remote appliances and machines with a built in automatic re-
covery  mechanism  in  the  event  of  failure.  Current  and 
planned enhancements to 'poudriere image' are described as 
well as improvements to support tools including bectl and 
zfsbootcfg.

1. Motivation
FreeBSD  is  a  popular  choice  for  building  appliances  be-
cause of its liberal license and composable base system, but 
each  vendor  is  tasked  with building  their  own upgrading 
mechanism for both minor security updates, and major OS 
upgrades. FreeBSD would benefit from a standardized up-
grading  mechanism that  is  adaptable  to  each  vendors  re-
quirements. We examined the existing updating frameworks 
in FreeBSD and then set  out  to build a  better  mousetrap. 
Leveraging experience gained while managing 100s of re-
mote servers we describe how upgrades can be handled in an 
automatic, yet  safe fashion, without merging configuration 
files or requiring manual intervention.

2. Prior Art
The problems of building system images and keeping sys-
tems up to date are not new. FreeBSD has evolved a number 
of systems over time to try to address these issues, and many 
of them worked quite well for a time. However, each has de-
veloped shortcomings as the state-of-the-art has advanced.

2.1. NanoBSD

NanoBSD is a build system first introduced to FreeBSD in 
2004 by Poul-Henning Kamp[1] for the purpose of making it 
easier to generate compact-flash disk images for embedded 
systems running FreeBSD. The resulting image would con-
sist of three partitions, the 3rd held persistent configuration 
data, and was usually quite small, and the remaining space 
was divided  evenly to  form two system image partitions. 
The current operating system would be written to both of 

these partitions, and in the future when it came time to up-
grade,  the  inactive  partition  would  be  overwritten  with a 
newer image, and a flag set to boot from that partition, one 
time only. If that boot succeeded, then the upgraded parti-
tion would become the new default. If boot failed, power cy-
cling the device would automatically revert to booting from 
the image that had been running before the attempted up-
grade.  Upgrades could continue like this,  alternating back 
and forth between the two partitions, always leaving the sys-
tem with a known good image to fall back to. The filesys-
tems were also mounted read-only, so power loss or other is-
sues could not corrupt the filesystem or require a fsck(8) at 
boot. Configuration data was copied from the dedicated con-
figuration partition to a memory-backed filesystem at boot, 
and optionally saved off to the dedicated partition when nec-
essary.

NanoBSD allowed easy customization of FreeBSD, includ-
ing and excluding features as needed to make a functional 
but  minimum system  image.  NanoBSD  was  adopted  by 
many  FreeBSD  based  appliances,  including  pfSense  and 
FreeNAS.

NanoBSD is limited to UFS, and both FreeNAS and pfSense 
have since switched to ZFS boot environment based solu-
tions instead.

2.2. freebsd-update

Binary updates for FreeBSD were first introduced in 2001 as 
experimental accompaniments to some security advisories in 
the summer of 2001 by Colin Percival[2]. In this timeframe, 
the freebsd-update client was available via the ports tree.

Version 2.0 of freebsd-update was merged into the FreeBSD 
base system in 2006, and the building of the updates was 
handed  off  to  the  FreeBSD  Security  Officer,  rather  than 
Colin personally building the updates.

freebsd-update binary updates are created by comparing the 
build output of the unmodified source code (build 1), to the 
same source code built with the clock changed backwards by 
400 days (build 2), to detect changes in files that are related 
to “build stamps”, rather than changes to the code. The off-
sets that contain “build stamps” are identified and recorded. 
Then a 3rd build is done of the patched source code, and it 
is compared to the original release binaries, excluding the 
offsets of the “build stamps”. Any files that  still  different 



have been modified by the patches to the source code, and 
need to be distributed as part of the binary update. Lastly, a 
4th build is done, again on the patched source code, to lo-
cate the new offsets of the “build stamps”, as changes to the 
source code are likely to have moved the build stamps. In 
some cases, the first of the four builds can be replaced with 
downloading the original -RELEASE iso instead.

PC-BSD previously attempted to use freebsd-update to pro-
vide updates to its users, but found the freebsd-update-server 
to be too slow (requiring 3 or 4 full buildworlds) and fragile. 
They also found that freebsd-update did not support updat-
ing stable branches or head, only releases. Users also com-
plained  about  the way merging of  configuration files  was 
handled (manually, labour intensive), especially the fact that 
freebsd-update  does not  ignore  changes to  VCS ID lines, 
and the chance of leaving merge markers in configuration 
errors by mistake is too high.

Currently freebsd-update is x86 only (i386 and amd64) and 
still requires a lot of manual intervention by secteam when 
trying to release security advisories. Support for other archi-
tectures is likely quite feasible, but the read/write access pat-
tern of the freebsd-update client is not very conducive to SD 
cards and other low speed, low endurance flash.

Recent work on reproducible builds should reduce the num-
ber of “build stamps” that  exist  in the official  releases  of 
FreeBSD, but this is unlikely to be able to eliminate an en-
tire build cycle due to the way freebsd-update is structured.

2.3. pkg base

There  have  been  discussions  and  development  towards  a 
goal is being able to distribute and update the FreeBSD base 
system using the pkg(8) package manager that is currently 
used to install and update 3rd party software, since 2014.

Currently development seems stalled and there is a lack of 
an overall design for what a packaged base system will look 
like. Trying to balance flexibility, and allowing a user to opt 
out of individual pieces of the base system has resulted in 
the system being split into many 100s of packages. This will 
make updates smaller, but makes dependency tracking more 
difficult and results in a very verbose package listing. How-
ever, pkg(8) has better automated 3-way merge handling for 
configuration files. Conflicts are left for the user to deal with 
later, leaving the original file in place, and installing the new 
version with the suffix “.pkgnew”.

PC-BSD/TrueOS attempted to use the pkg-base system as it 
existed, but found a number of limitations, especially around 
upgrades. TrueOS is currently starting fresh with trying to 
have the base packages built via the ports tree, rather than 
the main OS build infrastructure, with a target of approxi-

mately 10 packages, rather than the current 800 or so pack-
ages.

3. ZFS
ZFS is an advanced filesystem that combines the role of vol-
ume  manager  and  filesystem together  to  make  managing 
storage easier for the administrator. ZFS is a CoW (copy-on-
write) filesystem, so blocks are not overwritten in place, but 
written to a new location, and then the old location becomes 
free again later. ZFS is transactional like a database, so each 
group  of  writes  (transaction)  either  fully completes,  or  is 
rolled back. This allows ZFS to move from consistent state 
to consistent state, without ever requiring intervention from 
tools  like fsck.  So,  if  the system crashes or  unexpectedly 
loses power,  the filesystem does not require any recovery 
steps or consistency checks. It finds the more recently com-
pleted  transactions  and  mounts  the  filesystem  from  that 
point. This obviates the need to have the filesystem be read-
only, as it is in NanoBSD, to avoid being inconsistent.

A traditional filesystem can only operate upon a single disk, 
so volume managers were created that would allow multiple 
disks to be combined into a single logical disk that could be 
presented to the filesystem. The volume managers also grew 
features like parity and redundancy (RAID), to protect the 
filesystem from the failure of one of the disks that makes up 
the volume. By combining these roles into a single system, 
the ZFS filesystem has direct knowledge of the fact that the 
filesystem is backed by multiple disks, allowing for dynamic 
stripe sizes and other optimizations.

The biggest advantage to this approach, is that ZFS filesys-
tems each  share  all  of  the free  space  from the “pool”  of 
available  storage.  Whereas  in  a  traditional  filesystem, the 
volume must  be  partitioned  into  fixed-size  chunks  at  the 
time of filesystem creation. While most filesystems support 
growing, this requires there be contiguous free space avail-
able at the end of the existing filesystem. In addition to the 
inflexibility of this arrangement, it can lead to the available 
free  space  being  fragmented  across  multiple  partitions, 
where the total amount of free space is sufficient for an up-
coming task,  but  no  individual  partition  has  enough  free 
space to meet the demand. With ZFS, as files are written to 
one of the filesystems, the free space is taken from the pool 
and allocated  to  that  filesystem. Each filesystem does not 
have a fixed size, but instead can take available space from 
the pool as needed, in a thin-provisioned manor. It  is also 
possible to reserve space for a specific filesystem, or limit a 
filesystem with a quota.



4. ZFS Boot Environments
With ZFS, creating additional filesystems a low cost opera-
tion. This allows the NanoBSD concept to be taken much 
further. Instead of two fixed sized partitions for system im-
ages, ZFS allows a number of system images limited only by 
the available space in the pool. Additionally, the copy-on-
write nature of ZFS can used to share unchanged blocks be-
tween system images to save space.

The concept of ZFS boot environments, originally from So-
laris (as is ZFS), is having multiple root filesystems that the 
operator  can  choose  from at  boot  time,  using  the  loader 
menu. A snapshot of the working system can be taken at any 
time, and then cloned to create a writable filesystem, with 
the contents of the system image as it existed at the time of 
the snapshot. This allows the operator to easily revert to a 
previously working image, without the storage cost of an en-
tire system image. Additionally,  instead a single dedicated 
configuration partition, every filesystem other than the root 
filesystem is retained as the boot environment is changed. 
User data, such as home directories, log files, configuration, 
databases,  etc  are  all  retained  as  long  as  they  live  in  a 
filesystem other  than  the  root.  The  system image  can  be 
build such that packages (/usr/local) are included in the sys-
tem image (so a failed package upgrade can be reverted), or 
be kept in a separate filesystem, so they are not impacted by 
changes to the system image.

To provide an equivalent to the fail-safe upgrade mechanism 
that NanoBSD has using GPT partition flags, FreeBSD has 
the zfsbootcfg utility. This writes the name of the selected 
boot  environment into the on-disk filesystem label,  where 
boot1 (gptzfsboot) reads it, and then overwrites it with zero 
bytes. It then sets it as an environment variable when invok-
ing the loader.  The loader  then uses it  to load the kernel 
from that filesystem, and pass that filesystem as the root to 
the kernel when it boots. This provides the same “next boot, 
and next boot only” use this newly upgraded filesystem in-
stead of the default. If the boot is successful, the default can 
be changed and the upgraded system image will now boot by 
default. If  not, power cycling the device will revert to the 
previous system image, and the upgrade can be retried, or 
debugged.

ZFS  features  a  replication  protocol,  that  can  serialize  a 
filesystem or hierarchy of filesystems into a stream that can 
be stored for later recreation of the filesystem. This protocol 
also  includes  support  for  incremental  replication  between 
snapshots of a filesystem or series of filesystems. Using this 
system it  is  possible to incrementally update a  clone of a 
system image,  reducing the size of  the binary updates.  In 
2018 the replication protocol was enhanced to take advan-
tage  of  ZFS's  transparent  compression  features.  If  data  is 
compressed on-disk in the filesystem, it  can optionally re-

main  compressed  during  replication,  further  reducing  the 
size of the incremental system image updates.

5. Building System Images
How does one build a clean system image using ZFS? The 
FreeBSD package building framework, poudriere, includes a 
system image building feature.

5.1 Poudriere

In the previous generation of packaging on FreeBSD, before 
the pkg tool, packages were built in a distributed fashion, us-
ing a number of machines, but it was often fragile, and du-
plicated  a  lot  of  effort.  As work was distributed,  it  often 
came  to  pass  that  the  same  common dependencies  were 
build by each worker, and the effort is coordinating the dis-
tributed system, and maintaining the control software was to 
onerous.

Thus, poudriere (powderkeg in french) was invented. Rather 
than trying to build one package at  a  time,  as quickly as 
possible, using all of the CPUs, it instead creates a number 
of jails (by default equal to the number of CPU cores), and 
in  each  one  builds  a  single  package  using  only  a  single 
thread.  This tends to make much more efficent use of the 
available CPU cores, since parts of the build that are inher-
ently single threaded (configure scripts and the like) do not 
result in all other CPUs going idle. An additional advantage 
to using a jail for each builder, is that the jail can be reverted 
to a clean environment between each build, ensuring there is 
no contamination of the build environment. Before building 
each port, a clean copy of the operating system is setup, the 
binary packages of the dependencies are installed, and then 
the build is run. The build jail also has no access to the in-
ternet, ensuring that the build process cannot reach out to the 
internet and modify its behaviour. While not required, using 
ZFS for these build jails makes the cleanup process nearly 
instantaneous, as the filesystem is just reverted to a clean 
snapshot between each build.

The system image used for these build environments can be 
created by downloading the official releases of FreeBSD (no 
compiling required), or by building from source, optionally 
with  an  external  patch  applied  before  the  build  process. 
Poudriere supports both svn and git, as well as tar and copy-
ing an existing source tree. The former options include sup-
port for incremental updates (svn update, git pull). Existing 
system images  can  also  be  updated  with  freebsd-update. 
Poudriere  can  also  cross-build  for  different  architectures, 
making it possible to produce system images and packages 
for arm, arm64, risc-v, etc, from a standard amd64 machine.

These basic system images must be created in order to build 
packages, so when the need arose for Gandi.net to build vir-



tual machine images of FreeBSD for their public cloud, it 
was a logical extension to poudriere, and the “image” sub-
command was born. The image command takes an existing 
poudriere jail (which can be compiled, or created from an 
official release and binary updates), excludes listed files you 
do not want or need, adds an overlay (your own custom files 
that are added on top of the system image), installs a list of 
packages, and then generates an image in the specified for-
mat. Supported formats include ISO (cd/dvd image), option-
ally using an memory filesystem which itself is optionally 
compressed, or the same for a USB stick image, a raw disk 
image which is suitable to be written directly to a disk or 
converted to various hypervisor image formats, an embed-
ded or firmware image, a UFS dump, or a ZFS replication 
stream. The ZFS replication stream comes in two flavours, 
the entire pool (a compound stream containing all filesys-
tems), or a single stream containing just the root filesystem 
(the boot environment).

The author added the support for ZFS replication as an out-
put format for poudriere image, and is continuing to work on 
enhancements.  Currently  building  incremental  replication 
streams is still a work-in-progress. The existing ZFS support 
defaults to a pool layout identical to that created by bsdin-
stall, but is easily customizable. This controls what filesys-
tems are created for the whole pool image, or what files are 
included  in  the  root  filesystem  versus  having  their  own 
filesystem in the boot environment mode. This can be used 
to control if packages are part of the system image, or if they 
are managed independently.

Distribution of a boot environment system image is just a 
matter of feeding the contents of the image file to the `zfs 
recv poolname/ROOT/environment_name` command. For a 
full pool image, create a pool if one does not exist, and then 
`zfs recv -F poolname`. Beware, this will irrevocably over-
write the pool with the contents of the new system image.

5.2 Customizing Images

In order to achieve our requirement to retain system configu-
ration through upgrades, while avoiding the need to merge 
every change to /etc, we must make some small customiza-
tions to the system image as part of its creation. We create 
an  additional  filesystem, /cfg,  to  store  the  subset  of  files 
from /etc we wish to have been persistent. We then replace 
the versions in /etc with a symbolic link to /cfg. Our config-
uration moves the following files  to  /cfg:  fstab (for  swap 
configuration, ZFS does not use fstab by default), hostid (so 
the hostid  persists),  rc.conf.d (directory),  rc.conf.local,  re-
solv.conf, ssh (directory), sysctl.conf.local.

The remaining files in /etc are replaced with the latest ver-
sion during each system image upgrade.  Of course,  since 
these files now reside on a separate filesystem, they will not 

be  available  during  the  boot  process,  until  the  additional 
filesystems are mounted. This is doubly true since fstab is 
one of the files we have relocated, so the OS won't have a 
list of other filesystems to mount. To address this, we abuse 
a little known feature of FreeBSD's init process. Designed to 
allow booting  into  a  chroot  environment,  the  loader.conf 
variable init_script runs a script to prepare the chroot, and 
init_chroot sets the directory to chroot the system into. We 
use the init_script feature to run a small script that finds the 
poolname/cfg  filesystem and  mounts  it  early  in  the  boot 
process, before /etc/rc is run, so that our replacement config-
uration files will be readable.

6. Upgrading Systems
The process of upgrading a system is straightforward. First 
build the new system image, as a  ZFS boot  environment, 
then receive it under a new name to the pool on the target 
device. Use the zfsbootcfg utility to configure the system to 
boot  into  the  new environment  only  once.  Configuration 
such as hostname, network settings, SSH keys, will be re-
tained via the /cfg filesystem. Attempt a reboot. As the sys-
tem boots, it will erase the zfsbootcfg temporary configura-
tion. If there are no problems, the system will now be run-
ning from the new environment. It  is left as an exercise to 
the reader to develop a procedure to determine that the new 
system image is working as expected, and set the upgraded 
system image as the boot default. If this is not done, or the 
system fails to boot correctly, rebooting will use the previ-
ous system image.

Whether packages are included in the boot environment will 
depend  on  the  type  of  deployment.  In  an  appliance  type 
configuration, it makes sense to bundle the packages into the 
system image,  so  updating  the  system image  updates  the 
packages as well. This also avoids any potential dependancy 
solving issues, as the new system image always contains a 
freshly installed set of packages. In the case of a server de-
ployment, or an appliance where the set of packages may be 
customized, it may make sense to have /usr/local as its own 
filesystem and managing packages separately from the sys-
tem image. Reducing what is included in the system image 
makes the incremental updates smaller and less risky. De-
ploying OS security updates does not need to involve chang-
ing the versions of the packages that are installed on the sys-
tem. Excluding the packages from the system image allows 
the two to be updated separately.  They could still both be 
managed using the same ZFS update mechanism, just as sep-
arate filesystems.

In the case of a laptop or workstation, it makes sense to in-
clude the packages in the boot environment, so that a pack-
age upgrade can be undone if it causes issues. The advan-
tage to boot environment is that rolling back to an older sys-



tem image won't roll back the user data, so no work is lost 
even if rolling back to a weeks old system image.

7. Further Enhancements
There is still much to be done to improve this mechanism 
and provide a flexible but fail-safe upgrading mechanism. 
Creating a upgrading mechanism that is adaptable enough to 
serve the majority of use cases is challenging, but the result 
will ultimately be beneficial to the entire FreeBSD commu-
nity.

7.1 Poudriere Image

Currently the layout of ZFS datasets in poudriere image is 
very basic, and defaults to the same configuration used by 
the FreeBSD installer. The author envisions a series of dif-
ferent templates for different use cases, and a more expres-
sive  configuration  syntax that  requires  less  ZFS expertise 
than the current system.

In addition to further enhancements to the overlay system to 
make it  easier  and more performant to  include  additional 
material in the system image, it is desirable to have support  
for a post-built chroot script  to perform operations on the 
image. This is complicated in the cross-platform image case.

Poudriere  image has  a  relatively wide selection of  output 
formats, but the level of flexibility is still rather limited. In-
creasing the options available to the user without creating a 
combinatorial testing nightmare is a delicate balancing act. 
Even just the selection of disk layout and bootcode combi-
nations: MBR, BSD, or GPT partition table, Legacy BIOS, 
UEFI,  or  dual  mode,  regular  or  advanced  bootstrap code, 
encrypted with GELI or not, UFS (one or many partitions) 
or ZFS, etc quickly leads to over a 100 possible combina-
tions to test, let along try to support. Then each of those can 
be packed as a raw disk image, CD/DVD ISO, vmdk, vhd, 
qcow2,  Amazon  EC2  image,  and  more.  Finding  what  is 
more useful and most supportable and trying to limit creep 
will be challenging.

7.2 Bootstrap and Boot Code

Updating the bootstrap, the tiny bits of assembly that load 
the more complicated and feature rich loader, can be com-
plicated and error prone. Worst of all, there is currently no 
fallback mechanism if this goes wrong. In the legacy (BIOS) 
boot case, the bootstrap is a complicated process (see “Boot-
ing from Encrypted Disks on FreeBSD”[3], proceedings of 
AsiaBSDCon 2016) consisting of multiple phases. While the 
boot0 and boot1 rarely change, boot1 is usually combined 
with boot2, so is updated when boot2 changes. With ZFS, 
changes to boot2 are often required when new features are 

introduced, as boot2 contains a minimal, read only imple-
mentation of ZFS that is used to read the boot loader from 
the ZFS root filesystem. This is also where the zfsbootcfg 
logic happens. There is currently no provision for recovering 
from a failed boot2. If  the newly installed version doesn't 
boot, the zfsbootcfg logic may never happen, and its effects 
are only on the later stages of the boot anyway. In the com-
mon GPT case, boot1 and boot2 are combined and live in 
the partition with the “freebsd-boot” type. It may be possible 
to have have two “freebsd-boot” partitions (they are limited 
to  536  KB  each)  and  teach  the  boot0  step 
(stand/i386/pmbr/pmbr.S)  to  use  the GPT flags  similar  to 
NanoBSD to mark the freebsd-boot partition as failed, and 
on a successive boot, use the backup bootstrap code. Then 
have the boot failed flag removed by the loader when it runs 
successfully, assuming it can detect from which of the two 
freebsd-boot partitions it was spawned.

For the loader itself, the build world process keeps the previ-
ous version of the loader as /boot/loader.old, but relies on an 
operator interupting the boot2 phase and manually specify-
ing that the alternative loader should be used. Luckily, the 
loader  exists  in  the  boot  environment,  so  a  failure  here 
should be solved by zfsbootcfg's boot-once feature.

However, in the UEFI boot case, things are a bit different. 
Previously,  the  EFI  System  Partition  (ESP)  contained 
boot1.efi,  which had just enough of a filesystem driver to 
read /boot/loader.efi from the target filesystem and hand off 
the boot process to it. However, the duplication of features 
and code complexity have resulted in this approach being re-
placed with placing loader.efi directly into the ESP. Since 
boot1 was going to have to be updated to support new ZFS 
features on a regular basis, it no longer made sense as origi-
nally envisioned, a rarely changing shim that would load the 
more featureful loader.efi. So now we may need to develop 
a fail-safe mechanism for updating the EFI loader. This can 
likely be implemented with the EFI Variables service pro-
vided by the system firmware as managed by FreeBSD's efi-
bootmgr. The new loader would be installed to the ESP in a 
different location, and use the EFI nextboot feature to use 
the new loader only once. If this is successful, the regular 
loader can be replaced.

Additionally, there are plans to extend zfsbootcfg to have a 
more  expressive  configuration.  Currently  it  writes  a  raw 
string to an reserved area of the ZFS on-disk label, contain-
ing the pool and dataset name to mount the root filesystem 
for. Another ZFS user, Delphix, has a similar system, except 
theirs keeps only a counter, of the number of boot attempts. 
When a system manages to stay up for 10 minutes, it resets 
this counter to 0. If the boot attempts counter reaches 3, the 
system instead boots a rescue image that calls home for a 
technician to intervene. This came out of the constraints of 
the Amazon cloud environment,  where there is  no out-of-



band console access to resolve boot issues. The author envi-
sions  a  more  structured  data  store  (a  packed  nvlist)  that 
could contain multiple parameters,  combining the existing 
boot environment selection, a failure counter, a specific res-
cue environment, and even arbitrary environment variables 
to set to impact other parts of the boot process.

7.3 ZFS

There are a number of features that could be implemented in 
ZFS to make an upgrade  system easier  to  implement and 
more powerful. The first is actively being discussed on the 
monthly ZFS leadership calls,  which is a  more controlled 
zpool upgrade process. Rather than upgrading to all of the 
latest features, this would allow the user to specify a level to 
upgrade the pool  to,  such as “compatible-2019”,  which is 
the lowest common denominator of features supported by all 
main stream ZFS ports as of January 1, 2019. This ensures 
that a pool can be upgraded to get new features, but won't 
upgrade past what might be supported by the FreeBSD boot 
code, or what can be imported on OS X.

A zpool  bootcode  command to take care  of  updating the 
boot code on all disks in the pool could make this procedure 
much safer.  Currently on  FreeBSD,  when you  upgrade  a 
pool, the output of the upgrade command includes an exam-
ple command to upgrade the bootcode on your disk. How-
ever,  this  example  command assumes you are  booting in 
legacy BIOS mode, on a GPT partitioned disk. If you are 
booting in UEFI mode, or the default configuration the in-
staller uses, where both types of bootcode are installed, this 
command could end up overwriting the EFI bootcode parti-
tion with the legacy bootcode,  resulting in an unbootable 
system. Since it will not be possible for ZFS to accurately 
predict where the bootcode might need to go, the proposal is 
to relocate the bootcode to the location specified by the ZFS 
on-disk format. There is a 3.5 MB reserved area after the 
first two labels before the start of the filesystem. This is al-
ready used  for  the bootcode  if  the  partition  table  type  is 
MBR  instead  of  GPT.  This  would  then  just  involve  the 
zpool command writing the data to space owned by ZFS. It  
would  require  a  different  version  of  boot0  for  GPT,  that 
found the  freebsd-zfs  partition  and  read  boot1  and  boot2 
from the correct  offset,  rather  than looking for  boot1 and 
boot2 in the freebsd-boot partition. However, what should it 
do  in  the case  where there  are  multiple freebsd-zfs parti-
tions?

In the case of UEFI boot, things get sticky as well. Currently 
FreeBSD acts a bit different than most other ZFS ports when 
given an entire disk, rather than a partition. FreeBSD just 
writes the ZFS on-disk format directly to the device, with no 
partition table,  similar to the old “dangerously dedicated” 
BSD partition table scheme. In illumos , where ZFS origi-

nated, when given an entire disk, ZFS writes a GPT partition 
table, and creates a single large partition and puts the ZFS 
contents  in that.  Recently,  the zpool  create  command has 
been extended to have an optional  parameter  to create an 
ESP partition of a defined size to store the EFI loader, and 
then use the rest of the space for the ZFS partition. With this 
configuration, the ESP partition is somewhat controlled by 
ZFS, and could be overwritten with the newer loader as part  
of the zpool bootcode command. However, unlike the free-
bsd-boot parttion, of the reserved area in the ZFS label for 
other legacy bootcode, the ESP is not unformatted space, it 
is a FAT filesystem, and designed to container the loaders 
for multiple operating systems if the machine has multiple 
operating systems installed. It  can also contain EFI native 
applications for diagnostics. As such, it may not be advis-
able to overwrite the entire partition with an image that con-
tains only the FreeBSD bootcode.  Mounting the ESP and 
copying files to it doesn't seem like something that should be 
done by the zpool bootcode command.

Lastly,  another  ZFS feature in the works is  support  for  a 
newer compression algorithm, ZStandard (ZSTD). On a de-
fault installation of FreeBSD, the current default compres-
sion algorithm, LZ4,  compresses the image approximately 
2:1,  but  ZSTD can compress as much as 3:1,  making the 
system image, and incremental updates to it, smaller.

7.4 bectl and libbe

bectl and libbe are the recently introduced base system utili-
ties for managing boot environments on FreeBSD. Started as 
a Google Summer of Code project  in 2017, the work was 
later completed by Kyle Evans and merged into FreeBSD 
12.0.

In  addition  to  replacing the  previous  shell  script,  beadm, 
bectl also provides a C library, libbe, that can be integrated 
into appliance control planes and used by other tools, like 
package  managers.  Kyle  is  also  in  the  process  of  adding 
“deep  boot  environment” support,  which will handle chil-
dren under the root filesystem. One of the popular examples 
for this is having a /usr/src for each boot environment, that is 
a separate database, but /etc/rc.d/zfsbe takes care to mount 
the usr/src child for the current boot environment. This way 
the source tree that corresponds to the running kernel is al-
ways mounted. This could also allow things like /usr/local 
(for  packages)  to  be  a  separate  filesystem,  but  still  be 
swapped in sync with the boot environment.

Additionally, libbe makes it easier to integrate a customized 
mechanism for deciding that the boot-once of a system im-
age is working as expected, and make it the new default.



8. Additional Considerations
There are still many more factors to consider when design-
ing an upgrading mechanism. Most of what is described here 
would work in an air-gapped environment,  where the up-
dated system image was delivered on read-only media such 
as a DVD, but some minor changes may need to be made to 
accommodate this.

A lot more consideration needs to be paid to security and au-
thenticity. An update mechanism needs to be secure from a 
number of different threat vectors. The updated system im-
ages  should  likely  be  signed  to  prove  their  authenticity, 
which would require distributing the trusted keys with the 
original system image. If  updates are fetched from the in-
ternet, not only do you need to consider the identity of the 
host you are fetching from, but also the integrity of the new 
system image. Additionally, there may be a need to hide the 
details of the update (what previous version the system is be-
ing upgraded from), which may require randomizing parts of 
the request to ensure the resulting response size hides the de-
tails of the update.

There  is  also  the  considerations  around encryption.  Free-
BSD supports high performance full disk encryption using 
GELI. There is currently some support for GELI in the Free-
BSD bootcode and loader, but it is geared towards interac-
tive use on a laptop. There are some design documents, but 
no current work in progress to support headless operation of 
GELI by storing encryption keys  on dedicated  removable 
devices (such as a USB stick or smart card). However, since 
GELI operates at the block layer, below ZFS, it doesn't have 
much direct impact on the upgrading mechanisms. There is 
however a forthcoming feature in ZFS to provide filesystem 
native encryption. This does not encrypt all data on the disk, 
but provides for confidentiality of the user data and meta-
data of the individual filesystem. This allows only a subset 
of the filesystems to be encrypted,  possibly with different 
keys.  The main advantage to this design is that individual 
keys can be unloaded when they data is not needed, placing 
the data safely at rest. Importantly, the scrub (data integrity 
check) and resilver operations (recovering from failed disks) 
can operate without requiring the encrypt  keys be loaded. 
ZFS  replication  can  optionally send  the  ciphertext  rather 
than the plain text version of the filesystem in the replication 
stream. This would allow the distribution of encrypted sys-
tem images and updates.  However,  FreeBSD does not yet 
support this feature, and once it does, support for encrypting 
boot  environments  would  likely  be  futher  behind  if  it  is 
judged useful to have at all.

9. Conclusion
FreeBSD has the tools to build a fail-safe updating mecha-
nism, and with a bit more time to polish it, we hope to arrive 
at a flexible, yet easy to use solution that works for the ma-
jority of FreeBSD machines, be they appliances, embedded 
devices, servers, or laptops.
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