
Managing System Images with ZFS

Allan Jude, Klara Inc
allan@klarasystems.com

Abstract
The author describes existing procedures, tools, and ongoing
development to improve the process of updating appliances,
remote systems, and individual computers using ZFS. This
paper describes a mechanism for replacing the operating
system image with a newer image in a safe and atomic fash-
ion. This system allows for fail-safe unattended upgrades of
remote appliances and machines with a built in automatic re-
covery mechanism in the event of failure. Current and
planned enhancements to 'poudriere image' are described as
well as improvements to support tools including bectl and
zfsbootcfg.

1. Motivation
FreeBSD is a popular choice for building appliances be-
cause of its liberal license and composable base system, but
each vendor is tasked with building their own upgrading
mechanism for both minor security updates, and major OS
upgrades. FreeBSD would benefit from a standardized up-
grading mechanism that is adaptable to each vendors re-
quirements. We examined the existing updating frameworks
in FreeBSD and then set out to build a better mousetrap.
Leveraging experience gained while managing 100s of re-
mote servers we describe how upgrades can be handled in an
automatic, yet safe fashion, without merging configuration
files or requiring manual intervention.

2. Prior Art
The problems of building system images and keeping sys-
tems up to date are not new. FreeBSD has evolved a number
of systems over time to try to address these issues, and many
of them worked quite well for a time. However, each has de-
veloped shortcomings as the state-of-the-art has advanced.

2.1. NanoBSD

NanoBSD is a build system first introduced to FreeBSD in
2004 by Poul-Henning Kamp[1] for the purpose of making it
easier to generate compact-flash disk images for embedded
systems running FreeBSD. The resulting image would con-
sist of three partitions, the 3rd held persistent configuration
data, and was usually quite small, and the remaining space
was divided evenly to form two system image partitions.
The current operating system would be written to both of

these partitions, and in the future when it came time to up-
grade, the inactive partition would be overwritten with a
newer image, and a flag set to boot from that partition, one
time only. If that boot succeeded, then the upgraded parti-
tion would become the new default. If boot failed, power cy-
cling the device would automatically revert to booting from
the image that had been running before the attempted up-
grade. Upgrades could continue like this, alternating back
and forth between the two partitions, always leaving the sys-
tem with a known good image to fall back to. The filesys-
tems were also mounted read-only, so power loss or other is-
sues could not corrupt the filesystem or require a fsck(8) at
boot. Configuration data was copied from the dedicated con-
figuration partition to a memory-backed filesystem at boot,
and optionally saved off to the dedicated partition when nec-
essary.

NanoBSD allowed easy customization of FreeBSD, includ-
ing and excluding features as needed to make a functional
but minimum system image. NanoBSD was adopted by
many FreeBSD based appliances, including pfSense and
FreeNAS.

NanoBSD is limited to UFS, and both FreeNAS and pfSense
have since switched to ZFS boot environment based solu-
tions instead.

2.2. freebsd-update

Binary updates for FreeBSD were first introduced in 2001 as
experimental accompaniments to some security advisories in
the summer of 2001 by Colin Percival[2]. In this timeframe,
the freebsd-update client was available via the ports tree.

Version 2.0 of freebsd-update was merged into the FreeBSD
base system in 2006, and the building of the updates was
handed off to the FreeBSD Security Officer, rather than
Colin personally building the updates.

freebsd-update binary updates are created by comparing the
build output of the unmodified source code (build 1), to the
same source code built with the clock changed backwards by
400 days (build 2), to detect changes in files that are related
to “build stamps”, rather than changes to the code. The off-
sets that contain “build stamps” are identified and recorded.
Then a 3rd build is done of the patched source code, and it
is compared to the original release binaries, excluding the
offsets of the “build stamps”. Any files that still different

have been modified by the patches to the source code, and
need to be distributed as part of the binary update. Lastly, a
4th build is done, again on the patched source code, to lo-
cate the new offsets of the “build stamps”, as changes to the
source code are likely to have moved the build stamps. In
some cases, the first of the four builds can be replaced with
downloading the original -RELEASE iso instead.

PC-BSD previously attempted to use freebsd-update to pro-
vide updates to its users, but found the freebsd-update-server
to be too slow (requiring 3 or 4 full buildworlds) and fragile.
They also found that freebsd-update did not support updat-
ing stable branches or head, only releases. Users also com-
plained about the way merging of configuration files was
handled (manually, labour intensive), especially the fact that
freebsd-update does not ignore changes to VCS ID lines,
and the chance of leaving merge markers in configuration
errors by mistake is too high.

Currently freebsd-update is x86 only (i386 and amd64) and
still requires a lot of manual intervention by secteam when
trying to release security advisories. Support for other archi-
tectures is likely quite feasible, but the read/write access pat-
tern of the freebsd-update client is not very conducive to SD
cards and other low speed, low endurance flash.

Recent work on reproducible builds should reduce the num-
ber of “build stamps” that exist in the official releases of
FreeBSD, but this is unlikely to be able to eliminate an en-
tire build cycle due to the way freebsd-update is structured.

2.3. pkg base

There have been discussions and development towards a
goal is being able to distribute and update the FreeBSD base
system using the pkg(8) package manager that is currently
used to install and update 3rd party software, since 2014.

Currently development seems stalled and there is a lack of
an overall design for what a packaged base system will look
like. Trying to balance flexibility, and allowing a user to opt
out of individual pieces of the base system has resulted in
the system being split into many 100s of packages. This will
make updates smaller, but makes dependency tracking more
difficult and results in a very verbose package listing. How-
ever, pkg(8) has better automated 3-way merge handling for
configuration files. Conflicts are left for the user to deal with
later, leaving the original file in place, and installing the new
version with the suffix “.pkgnew”.

PC-BSD/TrueOS attempted to use the pkg-base system as it
existed, but found a number of limitations, especially around
upgrades. TrueOS is currently starting fresh with trying to
have the base packages built via the ports tree, rather than
the main OS build infrastructure, with a target of approxi-

mately 10 packages, rather than the current 800 or so pack-
ages.

3. ZFS
ZFS is an advanced filesystem that combines the role of vol-
ume manager and filesystem together to make managing
storage easier for the administrator. ZFS is a CoW (copy-on-
write) filesystem, so blocks are not overwritten in place, but
written to a new location, and then the old location becomes
free again later. ZFS is transactional like a database, so each
group of writes (transaction) either fully completes, or is
rolled back. This allows ZFS to move from consistent state
to consistent state, without ever requiring intervention from
tools like fsck. So, if the system crashes or unexpectedly
loses power, the filesystem does not require any recovery
steps or consistency checks. It finds the more recently com-
pleted transactions and mounts the filesystem from that
point. This obviates the need to have the filesystem be read-
only, as it is in NanoBSD, to avoid being inconsistent.

A traditional filesystem can only operate upon a single disk,
so volume managers were created that would allow multiple
disks to be combined into a single logical disk that could be
presented to the filesystem. The volume managers also grew
features like parity and redundancy (RAID), to protect the
filesystem from the failure of one of the disks that makes up
the volume. By combining these roles into a single system,
the ZFS filesystem has direct knowledge of the fact that the
filesystem is backed by multiple disks, allowing for dynamic
stripe sizes and other optimizations.

The biggest advantage to this approach, is that ZFS filesys-
tems each share all of the free space from the “pool” of
available storage. Whereas in a traditional filesystem, the
volume must be partitioned into fixed-size chunks at the
time of filesystem creation. While most filesystems support
growing, this requires there be contiguous free space avail-
able at the end of the existing filesystem. In addition to the
inflexibility of this arrangement, it can lead to the available
free space being fragmented across multiple partitions,
where the total amount of free space is sufficient for an up-
coming task, but no individual partition has enough free
space to meet the demand. With ZFS, as files are written to
one of the filesystems, the free space is taken from the pool
and allocated to that filesystem. Each filesystem does not
have a fixed size, but instead can take available space from
the pool as needed, in a thin-provisioned manor. It is also
possible to reserve space for a specific filesystem, or limit a
filesystem with a quota.

4. ZFS Boot Environments
With ZFS, creating additional filesystems a low cost opera-
tion. This allows the NanoBSD concept to be taken much
further. Instead of two fixed sized partitions for system im-
ages, ZFS allows a number of system images limited only by
the available space in the pool. Additionally, the copy-on-
write nature of ZFS can used to share unchanged blocks be-
tween system images to save space.

The concept of ZFS boot environments, originally from So-
laris (as is ZFS), is having multiple root filesystems that the
operator can choose from at boot time, using the loader
menu. A snapshot of the working system can be taken at any
time, and then cloned to create a writable filesystem, with
the contents of the system image as it existed at the time of
the snapshot. This allows the operator to easily revert to a
previously working image, without the storage cost of an en-
tire system image. Additionally, instead a single dedicated
configuration partition, every filesystem other than the root
filesystem is retained as the boot environment is changed.
User data, such as home directories, log files, configuration,
databases, etc are all retained as long as they live in a
filesystem other than the root. The system image can be
build such that packages (/usr/local) are included in the sys-
tem image (so a failed package upgrade can be reverted), or
be kept in a separate filesystem, so they are not impacted by
changes to the system image.

To provide an equivalent to the fail-safe upgrade mechanism
that NanoBSD has using GPT partition flags, FreeBSD has
the zfsbootcfg utility. This writes the name of the selected
boot environment into the on-disk filesystem label, where
boot1 (gptzfsboot) reads it, and then overwrites it with zero
bytes. It then sets it as an environment variable when invok-
ing the loader. The loader then uses it to load the kernel
from that filesystem, and pass that filesystem as the root to
the kernel when it boots. This provides the same “next boot,
and next boot only” use this newly upgraded filesystem in-
stead of the default. If the boot is successful, the default can
be changed and the upgraded system image will now boot by
default. If not, power cycling the device will revert to the
previous system image, and the upgrade can be retried, or
debugged.

ZFS features a replication protocol, that can serialize a
filesystem or hierarchy of filesystems into a stream that can
be stored for later recreation of the filesystem. This protocol
also includes support for incremental replication between
snapshots of a filesystem or series of filesystems. Using this
system it is possible to incrementally update a clone of a
system image, reducing the size of the binary updates. In
2018 the replication protocol was enhanced to take advan-
tage of ZFS's transparent compression features. If data is
compressed on-disk in the filesystem, it can optionally re-

main compressed during replication, further reducing the
size of the incremental system image updates.

5. Building System Images
How does one build a clean system image using ZFS? The
FreeBSD package building framework, poudriere, includes a
system image building feature.

5.1 Poudriere

In the previous generation of packaging on FreeBSD, before
the pkg tool, packages were built in a distributed fashion, us-
ing a number of machines, but it was often fragile, and du-
plicated a lot of effort. As work was distributed, it often
came to pass that the same common dependencies were
build by each worker, and the effort is coordinating the dis-
tributed system, and maintaining the control software was to
onerous.

Thus, poudriere (powderkeg in french) was invented. Rather
than trying to build one package at a time, as quickly as
possible, using all of the CPUs, it instead creates a number
of jails (by default equal to the number of CPU cores), and
in each one builds a single package using only a single
thread. This tends to make much more efficent use of the
available CPU cores, since parts of the build that are inher-
ently single threaded (configure scripts and the like) do not
result in all other CPUs going idle. An additional advantage
to using a jail for each builder, is that the jail can be reverted
to a clean environment between each build, ensuring there is
no contamination of the build environment. Before building
each port, a clean copy of the operating system is setup, the
binary packages of the dependencies are installed, and then
the build is run. The build jail also has no access to the in-
ternet, ensuring that the build process cannot reach out to the
internet and modify its behaviour. While not required, using
ZFS for these build jails makes the cleanup process nearly
instantaneous, as the filesystem is just reverted to a clean
snapshot between each build.

The system image used for these build environments can be
created by downloading the official releases of FreeBSD (no
compiling required), or by building from source, optionally
with an external patch applied before the build process.
Poudriere supports both svn and git, as well as tar and copy-
ing an existing source tree. The former options include sup-
port for incremental updates (svn update, git pull). Existing
system images can also be updated with freebsd-update.
Poudriere can also cross-build for different architectures,
making it possible to produce system images and packages
for arm, arm64, risc-v, etc, from a standard amd64 machine.

These basic system images must be created in order to build
packages, so when the need arose for Gandi.net to build vir-

tual machine images of FreeBSD for their public cloud, it
was a logical extension to poudriere, and the “image” sub-
command was born. The image command takes an existing
poudriere jail (which can be compiled, or created from an
official release and binary updates), excludes listed files you
do not want or need, adds an overlay (your own custom files
that are added on top of the system image), installs a list of
packages, and then generates an image in the specified for-
mat. Supported formats include ISO (cd/dvd image), option-
ally using an memory filesystem which itself is optionally
compressed, or the same for a USB stick image, a raw disk
image which is suitable to be written directly to a disk or
converted to various hypervisor image formats, an embed-
ded or firmware image, a UFS dump, or a ZFS replication
stream. The ZFS replication stream comes in two flavours,
the entire pool (a compound stream containing all filesys-
tems), or a single stream containing just the root filesystem
(the boot environment).

The author added the support for ZFS replication as an out-
put format for poudriere image, and is continuing to work on
enhancements. Currently building incremental replication
streams is still a work-in-progress. The existing ZFS support
defaults to a pool layout identical to that created by bsdin-
stall, but is easily customizable. This controls what filesys-
tems are created for the whole pool image, or what files are
included in the root filesystem versus having their own
filesystem in the boot environment mode. This can be used
to control if packages are part of the system image, or if they
are managed independently.

Distribution of a boot environment system image is just a
matter of feeding the contents of the image file to the `zfs
recv poolname/ROOT/environment_name` command. For a
full pool image, create a pool if one does not exist, and then
`zfs recv -F poolname`. Beware, this will irrevocably over-
write the pool with the contents of the new system image.

5.2 Customizing Images

In order to achieve our requirement to retain system configu-
ration through upgrades, while avoiding the need to merge
every change to /etc, we must make some small customiza-
tions to the system image as part of its creation. We create
an additional filesystem, /cfg, to store the subset of files
from /etc we wish to have been persistent. We then replace
the versions in /etc with a symbolic link to /cfg. Our config-
uration moves the following files to /cfg: fstab (for swap
configuration, ZFS does not use fstab by default), hostid (so
the hostid persists), rc.conf.d (directory), rc.conf.local, re-
solv.conf, ssh (directory), sysctl.conf.local.

The remaining files in /etc are replaced with the latest ver-
sion during each system image upgrade. Of course, since
these files now reside on a separate filesystem, they will not

be available during the boot process, until the additional
filesystems are mounted. This is doubly true since fstab is
one of the files we have relocated, so the OS won't have a
list of other filesystems to mount. To address this, we abuse
a little known feature of FreeBSD's init process. Designed to
allow booting into a chroot environment, the loader.conf
variable init_script runs a script to prepare the chroot, and
init_chroot sets the directory to chroot the system into. We
use the init_script feature to run a small script that finds the
poolname/cfg filesystem and mounts it early in the boot
process, before /etc/rc is run, so that our replacement config-
uration files will be readable.

6. Upgrading Systems
The process of upgrading a system is straightforward. First
build the new system image, as a ZFS boot environment,
then receive it under a new name to the pool on the target
device. Use the zfsbootcfg utility to configure the system to
boot into the new environment only once. Configuration
such as hostname, network settings, SSH keys, will be re-
tained via the /cfg filesystem. Attempt a reboot. As the sys-
tem boots, it will erase the zfsbootcfg temporary configura-
tion. If there are no problems, the system will now be run-
ning from the new environment. It is left as an exercise to
the reader to develop a procedure to determine that the new
system image is working as expected, and set the upgraded
system image as the boot default. If this is not done, or the
system fails to boot correctly, rebooting will use the previ-
ous system image.

Whether packages are included in the boot environment will
depend on the type of deployment. In an appliance type
configuration, it makes sense to bundle the packages into the
system image, so updating the system image updates the
packages as well. This also avoids any potential dependancy
solving issues, as the new system image always contains a
freshly installed set of packages. In the case of a server de-
ployment, or an appliance where the set of packages may be
customized, it may make sense to have /usr/local as its own
filesystem and managing packages separately from the sys-
tem image. Reducing what is included in the system image
makes the incremental updates smaller and less risky. De-
ploying OS security updates does not need to involve chang-
ing the versions of the packages that are installed on the sys-
tem. Excluding the packages from the system image allows
the two to be updated separately. They could still both be
managed using the same ZFS update mechanism, just as sep-
arate filesystems.

In the case of a laptop or workstation, it makes sense to in-
clude the packages in the boot environment, so that a pack-
age upgrade can be undone if it causes issues. The advan-
tage to boot environment is that rolling back to an older sys-

tem image won't roll back the user data, so no work is lost
even if rolling back to a weeks old system image.

7. Further Enhancements
There is still much to be done to improve this mechanism
and provide a flexible but fail-safe upgrading mechanism.
Creating a upgrading mechanism that is adaptable enough to
serve the majority of use cases is challenging, but the result
will ultimately be beneficial to the entire FreeBSD commu-
nity.

7.1 Poudriere Image

Currently the layout of ZFS datasets in poudriere image is
very basic, and defaults to the same configuration used by
the FreeBSD installer. The author envisions a series of dif-
ferent templates for different use cases, and a more expres-
sive configuration syntax that requires less ZFS expertise
than the current system.

In addition to further enhancements to the overlay system to
make it easier and more performant to include additional
material in the system image, it is desirable to have support
for a post-built chroot script to perform operations on the
image. This is complicated in the cross-platform image case.

Poudriere image has a relatively wide selection of output
formats, but the level of flexibility is still rather limited. In-
creasing the options available to the user without creating a
combinatorial testing nightmare is a delicate balancing act.
Even just the selection of disk layout and bootcode combi-
nations: MBR, BSD, or GPT partition table, Legacy BIOS,
UEFI, or dual mode, regular or advanced bootstrap code,
encrypted with GELI or not, UFS (one or many partitions)
or ZFS, etc quickly leads to over a 100 possible combina-
tions to test, let along try to support. Then each of those can
be packed as a raw disk image, CD/DVD ISO, vmdk, vhd,
qcow2, Amazon EC2 image, and more. Finding what is
more useful and most supportable and trying to limit creep
will be challenging.

7.2 Bootstrap and Boot Code

Updating the bootstrap, the tiny bits of assembly that load
the more complicated and feature rich loader, can be com-
plicated and error prone. Worst of all, there is currently no
fallback mechanism if this goes wrong. In the legacy (BIOS)
boot case, the bootstrap is a complicated process (see “Boot-
ing from Encrypted Disks on FreeBSD”[3], proceedings of
AsiaBSDCon 2016) consisting of multiple phases. While the
boot0 and boot1 rarely change, boot1 is usually combined
with boot2, so is updated when boot2 changes. With ZFS,
changes to boot2 are often required when new features are

introduced, as boot2 contains a minimal, read only imple-
mentation of ZFS that is used to read the boot loader from
the ZFS root filesystem. This is also where the zfsbootcfg
logic happens. There is currently no provision for recovering
from a failed boot2. If the newly installed version doesn't
boot, the zfsbootcfg logic may never happen, and its effects
are only on the later stages of the boot anyway. In the com-
mon GPT case, boot1 and boot2 are combined and live in
the partition with the “freebsd-boot” type. It may be possible
to have have two “freebsd-boot” partitions (they are limited
to 536 KB each) and teach the boot0 step
(stand/i386/pmbr/pmbr.S) to use the GPT flags similar to
NanoBSD to mark the freebsd-boot partition as failed, and
on a successive boot, use the backup bootstrap code. Then
have the boot failed flag removed by the loader when it runs
successfully, assuming it can detect from which of the two
freebsd-boot partitions it was spawned.

For the loader itself, the build world process keeps the previ-
ous version of the loader as /boot/loader.old, but relies on an
operator interupting the boot2 phase and manually specify-
ing that the alternative loader should be used. Luckily, the
loader exists in the boot environment, so a failure here
should be solved by zfsbootcfg's boot-once feature.

However, in the UEFI boot case, things are a bit different.
Previously, the EFI System Partition (ESP) contained
boot1.efi, which had just enough of a filesystem driver to
read /boot/loader.efi from the target filesystem and hand off
the boot process to it. However, the duplication of features
and code complexity have resulted in this approach being re-
placed with placing loader.efi directly into the ESP. Since
boot1 was going to have to be updated to support new ZFS
features on a regular basis, it no longer made sense as origi-
nally envisioned, a rarely changing shim that would load the
more featureful loader.efi. So now we may need to develop
a fail-safe mechanism for updating the EFI loader. This can
likely be implemented with the EFI Variables service pro-
vided by the system firmware as managed by FreeBSD's efi-
bootmgr. The new loader would be installed to the ESP in a
different location, and use the EFI nextboot feature to use
the new loader only once. If this is successful, the regular
loader can be replaced.

Additionally, there are plans to extend zfsbootcfg to have a
more expressive configuration. Currently it writes a raw
string to an reserved area of the ZFS on-disk label, contain-
ing the pool and dataset name to mount the root filesystem
for. Another ZFS user, Delphix, has a similar system, except
theirs keeps only a counter, of the number of boot attempts.
When a system manages to stay up for 10 minutes, it resets
this counter to 0. If the boot attempts counter reaches 3, the
system instead boots a rescue image that calls home for a
technician to intervene. This came out of the constraints of
the Amazon cloud environment, where there is no out-of-

band console access to resolve boot issues. The author envi-
sions a more structured data store (a packed nvlist) that
could contain multiple parameters, combining the existing
boot environment selection, a failure counter, a specific res-
cue environment, and even arbitrary environment variables
to set to impact other parts of the boot process.

7.3 ZFS

There are a number of features that could be implemented in
ZFS to make an upgrade system easier to implement and
more powerful. The first is actively being discussed on the
monthly ZFS leadership calls, which is a more controlled
zpool upgrade process. Rather than upgrading to all of the
latest features, this would allow the user to specify a level to
upgrade the pool to, such as “compatible-2019”, which is
the lowest common denominator of features supported by all
main stream ZFS ports as of January 1, 2019. This ensures
that a pool can be upgraded to get new features, but won't
upgrade past what might be supported by the FreeBSD boot
code, or what can be imported on OS X.

A zpool bootcode command to take care of updating the
boot code on all disks in the pool could make this procedure
much safer. Currently on FreeBSD, when you upgrade a
pool, the output of the upgrade command includes an exam-
ple command to upgrade the bootcode on your disk. How-
ever, this example command assumes you are booting in
legacy BIOS mode, on a GPT partitioned disk. If you are
booting in UEFI mode, or the default configuration the in-
staller uses, where both types of bootcode are installed, this
command could end up overwriting the EFI bootcode parti-
tion with the legacy bootcode, resulting in an unbootable
system. Since it will not be possible for ZFS to accurately
predict where the bootcode might need to go, the proposal is
to relocate the bootcode to the location specified by the ZFS
on-disk format. There is a 3.5 MB reserved area after the
first two labels before the start of the filesystem. This is al-
ready used for the bootcode if the partition table type is
MBR instead of GPT. This would then just involve the
zpool command writing the data to space owned by ZFS. It
would require a different version of boot0 for GPT, that
found the freebsd-zfs partition and read boot1 and boot2
from the correct offset, rather than looking for boot1 and
boot2 in the freebsd-boot partition. However, what should it
do in the case where there are multiple freebsd-zfs parti-
tions?

In the case of UEFI boot, things get sticky as well. Currently
FreeBSD acts a bit different than most other ZFS ports when
given an entire disk, rather than a partition. FreeBSD just
writes the ZFS on-disk format directly to the device, with no
partition table, similar to the old “dangerously dedicated”
BSD partition table scheme. In illumos , where ZFS origi-

nated, when given an entire disk, ZFS writes a GPT partition
table, and creates a single large partition and puts the ZFS
contents in that. Recently, the zpool create command has
been extended to have an optional parameter to create an
ESP partition of a defined size to store the EFI loader, and
then use the rest of the space for the ZFS partition. With this
configuration, the ESP partition is somewhat controlled by
ZFS, and could be overwritten with the newer loader as part
of the zpool bootcode command. However, unlike the free-
bsd-boot parttion, of the reserved area in the ZFS label for
other legacy bootcode, the ESP is not unformatted space, it
is a FAT filesystem, and designed to container the loaders
for multiple operating systems if the machine has multiple
operating systems installed. It can also contain EFI native
applications for diagnostics. As such, it may not be advis-
able to overwrite the entire partition with an image that con-
tains only the FreeBSD bootcode. Mounting the ESP and
copying files to it doesn't seem like something that should be
done by the zpool bootcode command.

Lastly, another ZFS feature in the works is support for a
newer compression algorithm, ZStandard (ZSTD). On a de-
fault installation of FreeBSD, the current default compres-
sion algorithm, LZ4, compresses the image approximately
2:1, but ZSTD can compress as much as 3:1, making the
system image, and incremental updates to it, smaller.

7.4 bectl and libbe

bectl and libbe are the recently introduced base system utili-
ties for managing boot environments on FreeBSD. Started as
a Google Summer of Code project in 2017, the work was
later completed by Kyle Evans and merged into FreeBSD
12.0.

In addition to replacing the previous shell script, beadm,
bectl also provides a C library, libbe, that can be integrated
into appliance control planes and used by other tools, like
package managers. Kyle is also in the process of adding
“deep boot environment” support, which will handle chil-
dren under the root filesystem. One of the popular examples
for this is having a /usr/src for each boot environment, that is
a separate database, but /etc/rc.d/zfsbe takes care to mount
the usr/src child for the current boot environment. This way
the source tree that corresponds to the running kernel is al-
ways mounted. This could also allow things like /usr/local
(for packages) to be a separate filesystem, but still be
swapped in sync with the boot environment.

Additionally, libbe makes it easier to integrate a customized
mechanism for deciding that the boot-once of a system im-
age is working as expected, and make it the new default.

8. Additional Considerations
There are still many more factors to consider when design-
ing an upgrading mechanism. Most of what is described here
would work in an air-gapped environment, where the up-
dated system image was delivered on read-only media such
as a DVD, but some minor changes may need to be made to
accommodate this.

A lot more consideration needs to be paid to security and au-
thenticity. An update mechanism needs to be secure from a
number of different threat vectors. The updated system im-
ages should likely be signed to prove their authenticity,
which would require distributing the trusted keys with the
original system image. If updates are fetched from the in-
ternet, not only do you need to consider the identity of the
host you are fetching from, but also the integrity of the new
system image. Additionally, there may be a need to hide the
details of the update (what previous version the system is be-
ing upgraded from), which may require randomizing parts of
the request to ensure the resulting response size hides the de-
tails of the update.

There is also the considerations around encryption. Free-
BSD supports high performance full disk encryption using
GELI. There is currently some support for GELI in the Free-
BSD bootcode and loader, but it is geared towards interac-
tive use on a laptop. There are some design documents, but
no current work in progress to support headless operation of
GELI by storing encryption keys on dedicated removable
devices (such as a USB stick or smart card). However, since
GELI operates at the block layer, below ZFS, it doesn't have
much direct impact on the upgrading mechanisms. There is
however a forthcoming feature in ZFS to provide filesystem
native encryption. This does not encrypt all data on the disk,
but provides for confidentiality of the user data and meta-
data of the individual filesystem. This allows only a subset
of the filesystems to be encrypted, possibly with different
keys. The main advantage to this design is that individual
keys can be unloaded when they data is not needed, placing
the data safely at rest. Importantly, the scrub (data integrity
check) and resilver operations (recovering from failed disks)
can operate without requiring the encrypt keys be loaded.
ZFS replication can optionally send the ciphertext rather
than the plain text version of the filesystem in the replication
stream. This would allow the distribution of encrypted sys-
tem images and updates. However, FreeBSD does not yet
support this feature, and once it does, support for encrypting
boot environments would likely be futher behind if it is
judged useful to have at all.

9. Conclusion
FreeBSD has the tools to build a fail-safe updating mecha-
nism, and with a bit more time to polish it, we hope to arrive
at a flexible, yet easy to use solution that works for the ma-
jority of FreeBSD machines, be they appliances, embedded
devices, servers, or laptops.

References
[1] Poul-Henning Kamp. Building a FreeBSD Appliance
With NanoBSD, 2005.

https://papers.freebsd.org/2005/phk-nanobsd/

[2] Colin Percival. An Automated Binary Security Update
System for FreeBSD, 2003.

http://www.daemonology.net/freebsd-update/binup.html

[3] Allan Jude. Booting from Encrypted Disks on FreeBSD,
2016.

http://allanjude.com/bsd/AsiaBSDCon2016_geliboot_pdf1a.
pdf

https://papers.freebsd.org/2005/phk-nanobsd/
http://allanjude.com/bsd/AsiaBSDCon2016_geliboot_pdf1a.pdf
http://allanjude.com/bsd/AsiaBSDCon2016_geliboot_pdf1a.pdf
http://www.daemonology.net/freebsd-update/binup.html

