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Introduction

● 15 Years as FreeBSD Server Admin
● FreeBSD src/doc committer (ZFS, bhyve, ucl, xo)
● FreeBSD Core Team (July 2016 - 2018)
● Co-Author of “FreeBSD Mastery: ZFS” and “FreeBSD 

Mastery: Advanced ZFS” with Michael W. Lucas
● Architect of the ScaleEngine CDN (HTTP and Video)
● Host of BSDNow.tv Podcast
● ZFS for large video collections, large website caches, 

mirrors of TrueOS pkgs and RaspBSD
● Single Handedly Manage Over 1000TB of ZFS Storage



Motivation

ScaleEngine uses SSH for bulk data transfer 
because it is the most convenient way to 
orchestrate the remote server receiving the 
data. We use ZFS replication for live failover, 
but also for pushing large sets of data to data 
centers all over the world.

ScaleEngine has four primary use cases for 
bulk data transfer:



ZFS Replication over LAN and MAN

We backup customer data between servers in 
our central data center, and the offsite 
locations. Data is usually “pulled” by the 
receiver.  LAN connections recently grew to 10 
gbps. MAN is a 1 gbps point to point link.
Saturating a 1 gbps pipe even with a few 
milliseconds of latency is not hard.
We control both sides, and they are FreeBSD, 
so a modified client that is faster is possible.



ZFS Over Internet

This is used to publish specific datasets to 
remote servers, such as the TrueOS package 
repositories. Data is “pulled” by the receiver.
Bandwidth-delay product works against us 
here. Getting higher speeds requires some 
work, and making this easier would be good.
Toronto to Germany is ~100ms.
Toronto to Melbourne is ~240ms.
Both ends FreeBSD, custom client ok.



Rsync

ZFS replication has replaced rsync almost 
everywhere. Except moving files from our Linux 
video transcoding rigs. Recordings of 
customers’ live streams are recorded locally at 
various ingest servers around the world, then 
transferred to the central storage servers. This 
data is “pushed” from the recording servers to 
the storage servers.
Origin is Linux, prefer to avoid custom client.



Customer SFTP

Customers upload original copies of their video 
content to us via SFTP/SCP, and we want to 
offer the best possible upload speeds without 
requiring the customer to use a modified 
version of SSH. Who knows what OS they will 
be running, or what SSH client they will use.
Mostly receiving, but care about both 
directions.



The HPN patches were first developed in 2004. The default 
SSH window size was 64 - 128 KB, which worked well for 
interactive sessions, but was severely limiting for bulk 
transfer in high bandwidth-delay product situations. The 
first patch enabled a dynamic window, allowing standard 
TCP window scaling, and offered much better transfer 
speeds over high latency links. The dynamic window 
feature only worked on HPN-to-HPN connections, so in 
other cases, the HPN patches increased the default 
window size to 2 MB.
With OpenSSH 4.7 in 2007, the stock default window size 
was also changed to 2 MB.

HPN



Manual Tuning

The HPN patches also added a client side 
configuration option, TcpRcvBuf, to manually 
specify a receive socket buffer size via 
setsockopt() SO_RCVBUF. This greatly 
increased transfer speeds when a client is 
receiving from a server. Performance for 
pushing data from a client to a server was still 
limited by the defined HPNBufferSize option, 
often suboptimal.



Bandwidth-Delay Product

Transfers over LAN are relatively fast but not 
quite able to saturation 10 gbps. But, what 
happens if you try to do it over the Internet?
Add even a mere 10 ms of delay, with a 4 MB 
socket buffer (double the default), and the 
theoretical maximum bandwidth drops to just 
3300mbps. Netcat manages this, while stock 
SSH only gets ~160 mbps. HPN can receive 
1300 mbps, but only send 175 mbps.



Reality is not 10 milliseconds

Bump the latency up to 100 ms, and the floor falls 
out from under you. With a 4 MB socket buffer, the 
theoretical capacity of the link is now just 335 
mbps. Stock SSH manages between 9 and 14 
mbps. HPN again can receive 180mbps, but only 
send the same 11 mbps as stock SSH. Even with 
a 32 MB socket buffer, stock SSH doesn’t get any 
faster, because the SSH window is a fixed size. 
HPN can manage to receive 1000 mbps, but that is 
still much less than half of the theoretical ~2700 
mbps BDP capacity.



Dynamically Not Scaling

ScaleEngine found it was necessary to 
manually set the HPN TcpRcvBuf settings to 
get acceptable transfer speeds. When this was 
investigated, it was determined that dynamic 
window scaling was not working. During both 
HPN and non-HPN bulk data transfers it was 
observed that the TCP window rarely grew 
beyond 256 KB. 



Why Not?

When investigated, it was determined that the 
channel_check_window() function slides the SSH 
window forward each time half of the window has 
been consumed. In version 4.7 an additional check 
was added, and the window is slid forward if the 
consumed portion of the window exceeds 3 times 
the maximum packet size (32 KB in OpenSSH 
7.2). We found that this pattern causes the TCP 
window to never increase much beyond that size, 
128 KB.



What is Wrong?

The HPN patch dynamic window feature 
increases the maximum SSH window to 1.5 
times the difference between the socket buffer 
and the maximum SSH window, but only if the 
socket buffer exceeds the maximum window 
size. Since this condition is never met, and the 
SSH window never grows, the TCP window 
never grows beyond half the size of the SSH 
window.



So, Fix it!

Our patch changes this behaviour to grow the SSH 
maximum window by 1.5 times the difference between 
the socket buffer and the unconsumed portion of the 
SSH window. This condition is now met once the TCP 
window grows to half of the maximum SSH window, and 
then the maximum SSH window is increased. The TCP 
window will grow further, to half of the new maximum. 
This process continues until the TCP buffer no longer 
needs to grow to maximize bandwidth, or the maximum 
size of the socket buffer imposed by the operating 
system is reached.



Results

With this fix in place, SSH can both send and 
receive at reasonable speeds even with a high 
bandwidth-delay product. The speeds achieved 
in testing were usually not much more than half 
of what netcat can do, but were still a very large 
improvement.
The change is restricted to non-interactive 
sessions, so the socket buffer of an interactive 
session will not grow and result in high input 
latencies.



Manual is Still Better

We find the TcpRcvBuf option from the 
HPN patches extremely useful. Rather 
than depending on the OS auto-scaling 
the socket buffer, we can just start with a 
large buffer immediately. This saves the 
first 2-4 minutes of the transfer being slow 
as the socket buffer grows.



Extending it Further

We needed this feature in the other 
direction, for sending to be faster. So we 
created a local protocol extension, 
RemoteRcvBuf. This allows the client to 
request that the server setsockopt() a 
larger receive buffer. The value is limited 
by a new SSH configuration option, and 
the limits imposed by the OS.



Tuning Tips

For SSH bulk transfer, it is desirable to avoid increasing the 
maximum size of the auto-scaling socket buffer, as this will 
impact all sockets on the system. The TcpRcvBuf feature, 
and its remote counterpart RemoteRcvBuf, allow the user 
to manually specify a larger static buffer for a single 
connection. You can tune the maximum buffer size to a 
very large value, allowing for extremely high 
bandwidth-delay products, while keeping the auto-scaling 
buffer at a reasonable size, to avoid consuming excess 
memory on a server that also serves many concurrent 
clients.



Sysctl City

This maximum size of an individual socket buffer is 
bounded by kern.ipc.maxsockbuf. This value is the 
maximum amount of memory that can be consumed by the 
buffer, not the maximum size of the buffer. 2048 bytes of 
buffer consumes 2048 bytes plus 256 bytes of overhead, 
so to support a 64 MB socket buffer, the maxsockbuf must 
be set to 72 MB.
● net.inet.tcp.{send,recv}space - initial size of the TCP socket buffer
● net.inet.tcp.{send,recv}buf_max - maximum size for auto-scaling
● net.inet.tcp.{send,recv}buf_inc - size of each growth increment
● net.inet.tcp.{send,recv}buf_auto - Enable/Disable auto-scaling
● kern.ipc.maxsockbuf - The maximum size of any socket buffer



Switching off the Crypto

The HPN patches also included a feature called 
the NONE cipher. This allowed a standard SSH 
session to be established, with encryption, then 
once the login process is finished, and the data 
transfer begins, the encryption was switched to 
a null cipher. The feature contains a number of 
protections to ensure it cannot be used for an 
interactive session, and can never spawn a 
shell.



HPN+NONE To the Rescue

Since 2011 ScaleEngine has made use of the 
HPN and NONE Cipher patches for SSH to 
accelerate ZFS replication, especially over 
LAN. Removing encryption and decryption from 
the pipeline made it possible to saturate 1 gbps 
interfaces with a modest CPU. The HPN 
patches improved performance of SSH over the 
Internet by using a larger sliding window.



Overcome by Events

The HPN patch doesn’t seem to help very 
much outside of manually requesting a large 
receive window. This only works if you are the 
receiver.
The NoneCipher is slower than some modern 
ciphers, because it still uses a MAC, the default 
UMAC64. This ends up being the bottleneck 
when trying to achieve 10 gbps.
So, what to do about it?
Lets look at where we are starting from



Mercat 5 and 6 @ Sentex

● Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz
● 6 Cores + Hyperthreading (Turboboost Disabled)
● 32 GB RAM
● Chelsio T580-LP-CR 40 Gigabit NICs (back-to-back)
● FreeBSD 11.0-RELEASE-p1
● Base OpenSSH (default): OpenSSH_7.2p2, OpenSSL 

1.0.2j-freebsd  26 Sep 2016
● HPN OpenSSH (hpn): OpenSSH_7.3p1, OpenSSL 

1.0.2j-freebsd  26 Sep 2016
● Patched OpenSSH (fixed): OpenSSH_7.3p1, OpenSSL 

1.0.2j-freebsd  26 Sep 2016



Measure First

Default cipher is ChaCha20-Poly1305
ChaCha20-Poly 1305: 1900 mbps

AES256/128-CBC: 2500/3000 mbps
AES256/128-CTR: 4800/5200 mbps

NoneCipher: 5800 mbps
AES256/128-GCM: 7800/9000 mbps

Netcat: 18000 mbps



Newer Crypto is Faster than NONE?

With modern hardware support for AES-NI, using the 
AES-GCM cipher is often faster than using the NONE 
cipher. Data is not encrypted, but a MAC is still 
applied, to detect modification of the data in transit. 
Whereas AES-GCM is an authenticated cipher and 
obviates the need to calculate a MAC as a separate 
pass. The fastest available MAC in OpenSSH is 
UMAC-64. On our test system, this limited the 
throughput of the NONE cipher to approximately 6,000 
mbps, while AES128-GCM reached 9,000mbps.



None MAC!

We addressed this problem by developing a new 
feature, the NONE MAC. By switching to 
OpenSSL's null MAC, throughput up to 15,000 
mbps was achieved. The same safeguards used 
for the NONE cipher are also applied to the NONE 
MAC. It cannot be used during an interactive 
session, or when a TTY is allocated. We do not 
require the protection of a MAC when doing ZFS 
replication, which does its own checksumming of 
the data.



Unclog the Pipe

Using the NONEMAC, that is no encryption, and no 
MAC, the patched version of OpenSSH was able to 
reach more than 80% of the performance of the netcat 
control transfer. AES-CTR was only ~10% slower than 
the NONE cipher, as both were constrained by the 
calculation of the MAC. The tests for AES-CBC and 
AES-CTR were then repeated with the NONEMAC. 
CBC mode saw 40% improvement for 128 bit, and 
30% for 256 bit, while CTR mode results were 
improved by 90% and 80% respectively.



Fresh Numbers

AES256-CBC + NONEMAC: 3300
AES128-CBC + NONEMAC: 4200

AES256-GCM: 7800
AES128-GCM: 9000

AES256-CTR + NONEMAC: 8500
AES128-CTR + NONEMAC: 9200

NONE Cipher + NONEMAC: 13100
Netcat: 18000 



Limits of Tuning

At this point, this work has reached the limits of 
what can be achieved with minor patching and OS 
tuning. DTrace flame graphs (figure 7 and 8) show 
that almost all CPU time is now spent in libc 
(memcpy, memset, realloc, etc). In order to get 
more performance, it would likely be necessary to 
make architectural changes to OpenSSH, and this 
seems excessive considering the tool is already 
being abused much beyond its intended purpose.





CPU Scaling

Figure 9 shows that performances across all 
ciphers scales linearly with CPU clock 
frequency. Even netcat is constrained by the 
speed at which it can copy memory into the 
socket. Sadly this means that most Intel Xeon 
E5-26xx processors cannot yet saturate 
10gbps network links, because of their lower 
relative clock speed compared to the E5-16xx 
processors used in the benchmarks.


