
SSH Bulk
Transfer

Performance
Allan Jude -- allanjude@freebsd.org

Introduction

● 15 Years as FreeBSD Server Admin
● FreeBSD src/doc committer (ZFS, bhyve, ucl, xo)
● FreeBSD Core Team (July 2016 - 2018)
● Co-Author of “FreeBSD Mastery: ZFS” and “FreeBSD

Mastery: Advanced ZFS” with Michael W. Lucas
● Architect of the ScaleEngine CDN (HTTP and Video)
● Host of BSDNow.tv Podcast
● ZFS for large video collections, large website caches,

mirrors of TrueOS pkgs and RaspBSD
● Single Handedly Manage Over 1000TB of ZFS Storage

Motivation

ScaleEngine uses SSH for bulk data transfer
because it is the most convenient way to
orchestrate the remote server receiving the
data. We use ZFS replication for live failover,
but also for pushing large sets of data to data
centers all over the world.

ScaleEngine has four primary use cases for
bulk data transfer:

ZFS Replication over LAN and MAN

We backup customer data between servers in
our central data center, and the offsite
locations. Data is usually “pulled” by the
receiver. LAN connections recently grew to 10
gbps. MAN is a 1 gbps point to point link.
Saturating a 1 gbps pipe even with a few
milliseconds of latency is not hard.
We control both sides, and they are FreeBSD,
so a modified client that is faster is possible.

ZFS Over Internet

This is used to publish specific datasets to
remote servers, such as the TrueOS package
repositories. Data is “pulled” by the receiver.
Bandwidth-delay product works against us
here. Getting higher speeds requires some
work, and making this easier would be good.
Toronto to Germany is ~100ms.
Toronto to Melbourne is ~240ms.
Both ends FreeBSD, custom client ok.

Rsync

ZFS replication has replaced rsync almost
everywhere. Except moving files from our Linux
video transcoding rigs. Recordings of
customers’ live streams are recorded locally at
various ingest servers around the world, then
transferred to the central storage servers. This
data is “pushed” from the recording servers to
the storage servers.
Origin is Linux, prefer to avoid custom client.

Customer SFTP

Customers upload original copies of their video
content to us via SFTP/SCP, and we want to
offer the best possible upload speeds without
requiring the customer to use a modified
version of SSH. Who knows what OS they will
be running, or what SSH client they will use.
Mostly receiving, but care about both
directions.

The HPN patches were first developed in 2004. The default
SSH window size was 64 - 128 KB, which worked well for
interactive sessions, but was severely limiting for bulk
transfer in high bandwidth-delay product situations. The
first patch enabled a dynamic window, allowing standard
TCP window scaling, and offered much better transfer
speeds over high latency links. The dynamic window
feature only worked on HPN-to-HPN connections, so in
other cases, the HPN patches increased the default
window size to 2 MB.
With OpenSSH 4.7 in 2007, the stock default window size
was also changed to 2 MB.

HPN

Manual Tuning

The HPN patches also added a client side
configuration option, TcpRcvBuf, to manually
specify a receive socket buffer size via
setsockopt() SO_RCVBUF. This greatly
increased transfer speeds when a client is
receiving from a server. Performance for
pushing data from a client to a server was still
limited by the defined HPNBufferSize option,
often suboptimal.

Bandwidth-Delay Product

Transfers over LAN are relatively fast but not
quite able to saturation 10 gbps. But, what
happens if you try to do it over the Internet?
Add even a mere 10 ms of delay, with a 4 MB
socket buffer (double the default), and the
theoretical maximum bandwidth drops to just
3300mbps. Netcat manages this, while stock
SSH only gets ~160 mbps. HPN can receive
1300 mbps, but only send 175 mbps.

Reality is not 10 milliseconds

Bump the latency up to 100 ms, and the floor falls
out from under you. With a 4 MB socket buffer, the
theoretical capacity of the link is now just 335
mbps. Stock SSH manages between 9 and 14
mbps. HPN again can receive 180mbps, but only
send the same 11 mbps as stock SSH. Even with
a 32 MB socket buffer, stock SSH doesn’t get any
faster, because the SSH window is a fixed size.
HPN can manage to receive 1000 mbps, but that is
still much less than half of the theoretical ~2700
mbps BDP capacity.

Dynamically Not Scaling

ScaleEngine found it was necessary to
manually set the HPN TcpRcvBuf settings to
get acceptable transfer speeds. When this was
investigated, it was determined that dynamic
window scaling was not working. During both
HPN and non-HPN bulk data transfers it was
observed that the TCP window rarely grew
beyond 256 KB.

Why Not?

When investigated, it was determined that the
channel_check_window() function slides the SSH
window forward each time half of the window has
been consumed. In version 4.7 an additional check
was added, and the window is slid forward if the
consumed portion of the window exceeds 3 times
the maximum packet size (32 KB in OpenSSH
7.2). We found that this pattern causes the TCP
window to never increase much beyond that size,
128 KB.

What is Wrong?

The HPN patch dynamic window feature
increases the maximum SSH window to 1.5
times the difference between the socket buffer
and the maximum SSH window, but only if the
socket buffer exceeds the maximum window
size. Since this condition is never met, and the
SSH window never grows, the TCP window
never grows beyond half the size of the SSH
window.

So, Fix it!

Our patch changes this behaviour to grow the SSH
maximum window by 1.5 times the difference between
the socket buffer and the unconsumed portion of the
SSH window. This condition is now met once the TCP
window grows to half of the maximum SSH window, and
then the maximum SSH window is increased. The TCP
window will grow further, to half of the new maximum.
This process continues until the TCP buffer no longer
needs to grow to maximize bandwidth, or the maximum
size of the socket buffer imposed by the operating
system is reached.

Results

With this fix in place, SSH can both send and
receive at reasonable speeds even with a high
bandwidth-delay product. The speeds achieved
in testing were usually not much more than half
of what netcat can do, but were still a very large
improvement.
The change is restricted to non-interactive
sessions, so the socket buffer of an interactive
session will not grow and result in high input
latencies.

Manual is Still Better

We find the TcpRcvBuf option from the
HPN patches extremely useful. Rather
than depending on the OS auto-scaling
the socket buffer, we can just start with a
large buffer immediately. This saves the
first 2-4 minutes of the transfer being slow
as the socket buffer grows.

Extending it Further

We needed this feature in the other
direction, for sending to be faster. So we
created a local protocol extension,
RemoteRcvBuf. This allows the client to
request that the server setsockopt() a
larger receive buffer. The value is limited
by a new SSH configuration option, and
the limits imposed by the OS.

Tuning Tips

For SSH bulk transfer, it is desirable to avoid increasing the
maximum size of the auto-scaling socket buffer, as this will
impact all sockets on the system. The TcpRcvBuf feature,
and its remote counterpart RemoteRcvBuf, allow the user
to manually specify a larger static buffer for a single
connection. You can tune the maximum buffer size to a
very large value, allowing for extremely high
bandwidth-delay products, while keeping the auto-scaling
buffer at a reasonable size, to avoid consuming excess
memory on a server that also serves many concurrent
clients.

Sysctl City

This maximum size of an individual socket buffer is
bounded by kern.ipc.maxsockbuf. This value is the
maximum amount of memory that can be consumed by the
buffer, not the maximum size of the buffer. 2048 bytes of
buffer consumes 2048 bytes plus 256 bytes of overhead,
so to support a 64 MB socket buffer, the maxsockbuf must
be set to 72 MB.
● net.inet.tcp.{send,recv}space - initial size of the TCP socket buffer
● net.inet.tcp.{send,recv}buf_max - maximum size for auto-scaling
● net.inet.tcp.{send,recv}buf_inc - size of each growth increment
● net.inet.tcp.{send,recv}buf_auto - Enable/Disable auto-scaling
● kern.ipc.maxsockbuf - The maximum size of any socket buffer

Switching off the Crypto

The HPN patches also included a feature called
the NONE cipher. This allowed a standard SSH
session to be established, with encryption, then
once the login process is finished, and the data
transfer begins, the encryption was switched to
a null cipher. The feature contains a number of
protections to ensure it cannot be used for an
interactive session, and can never spawn a
shell.

HPN+NONE To the Rescue

Since 2011 ScaleEngine has made use of the
HPN and NONE Cipher patches for SSH to
accelerate ZFS replication, especially over
LAN. Removing encryption and decryption from
the pipeline made it possible to saturate 1 gbps
interfaces with a modest CPU. The HPN
patches improved performance of SSH over the
Internet by using a larger sliding window.

Overcome by Events

The HPN patch doesn’t seem to help very
much outside of manually requesting a large
receive window. This only works if you are the
receiver.
The NoneCipher is slower than some modern
ciphers, because it still uses a MAC, the default
UMAC64. This ends up being the bottleneck
when trying to achieve 10 gbps.
So, what to do about it?
Lets look at where we are starting from

Mercat 5 and 6 @ Sentex

● Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz
● 6 Cores + Hyperthreading (Turboboost Disabled)
● 32 GB RAM
● Chelsio T580-LP-CR 40 Gigabit NICs (back-to-back)
● FreeBSD 11.0-RELEASE-p1
● Base OpenSSH (default): OpenSSH_7.2p2, OpenSSL

1.0.2j-freebsd 26 Sep 2016
● HPN OpenSSH (hpn): OpenSSH_7.3p1, OpenSSL

1.0.2j-freebsd 26 Sep 2016
● Patched OpenSSH (fixed): OpenSSH_7.3p1, OpenSSL

1.0.2j-freebsd 26 Sep 2016

Measure First

Default cipher is ChaCha20-Poly1305
ChaCha20-Poly 1305: 1900 mbps

AES256/128-CBC: 2500/3000 mbps
AES256/128-CTR: 4800/5200 mbps

NoneCipher: 5800 mbps
AES256/128-GCM: 7800/9000 mbps

Netcat: 18000 mbps

Newer Crypto is Faster than NONE?

With modern hardware support for AES-NI, using the
AES-GCM cipher is often faster than using the NONE
cipher. Data is not encrypted, but a MAC is still
applied, to detect modification of the data in transit.
Whereas AES-GCM is an authenticated cipher and
obviates the need to calculate a MAC as a separate
pass. The fastest available MAC in OpenSSH is
UMAC-64. On our test system, this limited the
throughput of the NONE cipher to approximately 6,000
mbps, while AES128-GCM reached 9,000mbps.

None MAC!

We addressed this problem by developing a new
feature, the NONE MAC. By switching to
OpenSSL's null MAC, throughput up to 15,000
mbps was achieved. The same safeguards used
for the NONE cipher are also applied to the NONE
MAC. It cannot be used during an interactive
session, or when a TTY is allocated. We do not
require the protection of a MAC when doing ZFS
replication, which does its own checksumming of
the data.

Unclog the Pipe

Using the NONEMAC, that is no encryption, and no
MAC, the patched version of OpenSSH was able to
reach more than 80% of the performance of the netcat
control transfer. AES-CTR was only ~10% slower than
the NONE cipher, as both were constrained by the
calculation of the MAC. The tests for AES-CBC and
AES-CTR were then repeated with the NONEMAC.
CBC mode saw 40% improvement for 128 bit, and
30% for 256 bit, while CTR mode results were
improved by 90% and 80% respectively.

Fresh Numbers

AES256-CBC + NONEMAC: 3300
AES128-CBC + NONEMAC: 4200

AES256-GCM: 7800
AES128-GCM: 9000

AES256-CTR + NONEMAC: 8500
AES128-CTR + NONEMAC: 9200

NONE Cipher + NONEMAC: 13100
Netcat: 18000

Limits of Tuning

At this point, this work has reached the limits of
what can be achieved with minor patching and OS
tuning. DTrace flame graphs (figure 7 and 8) show
that almost all CPU time is now spent in libc
(memcpy, memset, realloc, etc). In order to get
more performance, it would likely be necessary to
make architectural changes to OpenSSH, and this
seems excessive considering the tool is already
being abused much beyond its intended purpose.

CPU Scaling

Figure 9 shows that performances across all
ciphers scales linearly with CPU clock
frequency. Even netcat is constrained by the
speed at which it can copy memory into the
socket. Sadly this means that most Intel Xeon
E5-26xx processors cannot yet saturate
10gbps network links, because of their lower
relative clock speed compared to the E5-16xx
processors used in the benchmarks.

